高等代数笔记1:基础知识

复数和数域

首先,我们要引入复数,实际上,我们在中学数学中已经接触过复数了,我们知道,实数域的加法和乘法有如下性质:
(1)(加法交换律) a + b = b + a a+b=b+a a+b=b+a
(2)(加法结合律) a + b + c = a + ( b + c ) a+b+c=a+(b+c) a+b+c=a+(b+c)
(3)(存在零元) 0 + a = a 0+a=a 0+a=a
(4)(存在相反元) ( − a ) + a = 0 (-a)+a=0 (a)+a=0
(5)(乘法交换律) a b = b a ab=ba ab=ba
(6)(乘法结合律) a b c = a ( b c ) abc=a(bc) abc=a(bc)
(7)(存在单位元) 1. a = a 1.a=a 1.a=a
(8)(存在逆元) a ≠ 0 , a ( 1 a ) = 1 a\neq 0,a(\frac{1}{a})=1 a=0,a(a1)=1
(9)(分配律) a ( b + c ) = a b + a c a(b+c)=ab+ac a(b+c)=ab+ac

我们知道,为了研究一元多次方程的根,实数域是远远不够的。如方程 x 2 + 1 = 0 x^2+1=0 x2+1=0我们知道该一元二次方程在实数域内无根,原因就在于不存在实数 x x x x 2 = − 1 x^2=-1 x2=1,为了解决负数不能开根的问题,我们需要对数域进行扩充。我们规定 i 2 = − 1 i^2=-1 i2=1。显然 i i i一定不是实数,因为,所有实数的平方都非负,这样,我们就引入了一个新的数 i i i,这个数不是实数,是一个假象的数,英文为imaginary number,据此,我们定义一种新的数: a + b i , a ∈ R , b ∈ R a+bi,a\in R,b\in R a+bi,aR,bR

我们称这种形式的数为复数,全体复数记为 C C C,复数的加法和乘法规定如下:
(1) ( a 1 + b 1 i ) + ( a 2 + b 2 i ) = ( a 1 + a 2 ) + ( b 1 + b 2 ) i (a_1+b_1i)+(a_2+b_2i)=(a_1+a_2)+(b_1+b_2)i (a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i
(2) ( a + b i ) ( c + d i ) = a c − b d + ( a d + b c ) i (a+bi)(c+di)=ac-bd+(ad+bc)i (a+bi)(c+di)=acbd+(ad+bc)i
如果 c = a + b i c=a+bi c=a+bi a a a称为 c c c的实部,记为 R e ( c ) Re(c) Re(c) b b b称为 c c c的虚部,记为 I m ( c ) Im(c) Im(c),两个复数相等当且仅当两个复数实部和虚部都相等,减法和除法就定义为加法和乘法的逆运算。容易验证复数有如下的运算规律:
(1)(加法交换律) c 1 + c 2 = c 2 + c 1 c_1+c_2=c_2+c_1 c1+c2=c2+c1
(2)(加法结合律) c 1 + c 2 + c 3 = c 1 + ( c 2 + c 3 ) c_1+c_2+c_3=c_1+(c_2+c_3) c1+c2+c3=c1+(c2+c3)
(3)(存在零元) 0 + c = c 0 = 0 + 0 i 0+c=c \quad 0=0+0i 0+c=c0=0+0i
(4)(存在相反元) c + ( − c ) = 0 − c = − R e ( c ) + ( − I m ( c ) ) i c+(-c)=0\quad -c = -Re(c)+(-Im(c))i c+(c)=0c=Re(c)+(Im(c))i
(5)(乘法交换律) c 1 c 2 = c 2 c 1 c_1c_2=c_2c_1 c1c2=c2c1
(6)(乘法结合律) c 1 c 2 c 3 = c 1 ( c 2 c 3 ) c_1c_2c_3=c_1(c_2c_3) c1c2c3=c1(c2c3)
当然还满足
(7)(存在单位元) 1. c = c 1.c=c 1.c=c
(8)(存在逆元) c ≠ 0 , c . ( 1 c ) = 1 c\neq 0,c.(\frac{1}{c})=1 c=0,c.(c1)=1
(9)(分配律) c ( c 1 + c 2 ) = c 1 c + c 2 c c(c_1+c_2)=c_1c+c_2c c(c1+c2)=c1c+c2c

(1)-(5)的验证的比较简单,我们仅验证(6)-(9):
(6)设 c 1 = a 1 + b 1 i c_1=a_1+b_1i c1=a1+b1i c 2 = a 2 + b 2 i c_2=a_2+b_2i c2=a2+b2i c 3 = a 3 + b 3 i c_3=a_3+b_3i c3=a3+b3i c 1 c 2 = ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i c_1c_2=(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i c1c2=(a1a2b1b2)+(a1b2+a2b1)i c 1 c 2 c 3 = [ a 3 ( a 1 a 2 − b 1 b 2 ) − b 3 ( a 1 b 2 + a 2 b 1 ) ] + [ a 3 ( a 1 b 2 + a 2 b 1 ) + b 3 ( a 1 a 2 − b 1 b 2 ) ] i = [ a 1 ( a 2 a 3 − b 2 b 3 ) − b 1 ( a 3 b 2 + a 2 b 3 ) ] + [ a 1 ( b 2 a 3 + a 2 b 3 ) + b 1 ( a 2 a 3 − b 2 b 3 ) ] i = c 1 ( c 2 c 3 ) c_1c_2c_3=[a_3(a_1a_2-b_1b_2)-b_3(a_1b_2+a_2b_1)] +[a_3(a_1b_2+a_2b_1)+b_3(a_1a_2-b_1b_2)]i\\ =[a_1(a_2a_3-b_2b_3)-b_1(a_3b_2+a_2b_3)]+ [a_1(b_2a_3+a_2b_3)+b_1(a_2a_3-b_2b_3)]i\\ =c_1(c_2c_3) c1c2c3=[a3(a1a2b1b2)b3(a1b2+a2b1)]+[a3(a1b2+a2b1)+b3(a1a2b1b2)]i=[a1(a2a3b2b3)b1(a3b2+a2b3)]+[a1(b2a3+a2b3)+b1(a2a3b2b3)]i=c1(c2c3)(7) 1 = 1 + 0 i 1=1+0i 1=1+0i,而对任意的 c = a + b i c=a+bi c=a+bi,都有 ( a + b i ) . 1 = ( a . 1 − b . 0 ) + ( b . 1 + a . 0 ) i = c (a+bi).1=(a.1-b.0)+(b.1+a.0)i=c (a+bi).1=(a.1b.0)+(b.1+a.0)i=c(8) c = a + b i ≠ 0 , a 2 + b 2 > 0 c=a+bi\neq 0,\sqrt{a^2+b^2}>0 c=a+bi=0,a2+b2 >0,令 d = a − b i a 2 + b 2 d=\frac{a-bi}{a^2+b^2} d=a2+b2abi,则 c d = ( a + b i ) ( a − b i ) a 2 + b 2 = 1 cd = \frac{(a+bi)(a-bi)}{a^2+b^2} = 1 cd=a2+b2(a+bi)(abi)=1(9) c 1 = a 1 + b 1 i , c 2 = a 2 + b 2 i , c 3 = a 3 + b 3 i c_1=a_1+b_1i,c_2=a_2+b_2i,c_3=a_3+b_3i c1=a1+b1i,c2=a2+b2i,c3=a3+b3i,则 c 1 ( c 2 + c 3 ) = ( a 1 + b 1 i ) ( ( a 2 + a 3 ) + ( b 2 + b 3 ) i ) = [ a 1 ( a 2 + a 3 ) − b 1 ( b 2 + b 3 ) ] + [ a 1 ( b 2 + b 3 ) + b 1 ( a 2 + a 3 ) ] i = [ ( a 1 a 2 − b 1 b 2 ) + ( a 1 b 2 + a 2 b 1 ) i ] + [ ( a 1 a 3 − b 1 b 3 ) + ( a 1 b 3 + a 3 b 1 ) i ] = c 1 c 2 + c 1 c 3 c_1(c_2+c_3)=(a_1+b_1i)((a_2+a_3)+(b_2+b_3)i)\\ =[a_1(a_2+a_3)-b_1(b_2+b_3)]+[a_1(b_2+b_3)+b_1(a_2+a_3)]i\\ =[(a_1a_2-b_1b_2)+(a_1b_2+a_2b_1)i]+ [(a_1a_3-b_1b_3)+(a_1b_3+a_3b_1)i]\\ =c_1c_2+c_1c_3 c1(c2+c3)=(a1+b1i)((a2+a3)+(b2+b3)i)=[a1(a2+a3)b1(b2+b3)]+[a1(b2+b3)+b1(a2+a3)]i=[(a1a2b1b2)+(a1b2+a2b1)i]+[(a1a3b1b3)+(a1b3+a3b1)i]=c1c2+c1c3

实际上,以上九条运算性质,不仅复数和实数有,有理数也同样有以上九条性质。我们把具有以上九条运算性质的数系就称为数域。
定义1.1 S S S是一个数系,在 S S S上定义的加法和乘法,并且满足:
(1) ∀ a , b ∈ S , a + b = b + a \forall a,b\in S,a+b=b+a a,bS,a+b=b+a
(2) ∀ a , b , c ∈ S , a + b + c = a + ( b + c ) \forall a,b,c \in S,a+b+c=a+(b+c) a,b,cS,a+b+c=a+(b+c)
(3) ∃ 0 ∈ S , ∀ a ∈ S , a + 0 = a \exists 0\in S,\forall a \in S,a+0=a 0S,aS,a+0=a
(4) ∀ a ∈ S , ∃ b ∈ S , a + b = 0 \forall a \in S,\exists b\in S,a+b=0 aS,bS,a+b=0
(5) ∀ a , b ∈ S , a b = b a \forall a,b\in S,ab=ba a,bS,ab=ba
(6) ∀ a , b , c ∈ S , a b c = a ( b c ) \forall a,b,c\in S,abc=a(bc) a,b,cS,abc=a(bc)
(7) ∃ 1 ∈ S , ∀ a ∈ S , 1. a = a \exists 1\in S,\forall a\in S,1.a=a 1S,aS,1.a=a
(8) ∀ a ∈ S , a ≠ 0 , ∃ b ∈ S , a b = 1 \forall a\in S,a\neq 0,\exists b\in S,ab=1 aS,a=0,bS,ab=1
(9) ∀ a , b , c ∈ S , a ( b + c ) = a b + a c \forall a,b,c\in S,a(b+c)=ab+ac a,b,cS,a(b+c)=ab+ac
则称 S S S是一个数域

有理数系、实数系和复数系都是数域,因而我们又称为有理数域、实数域和复数域,根据数域的定义,我们还有如下的性质:
(1)零元必唯一:

假设 α , β ∈ S \alpha,\beta\in S α,βS ∀ a ∈ S \forall a \in S aS,都有 α + a = a = β + a \alpha + a= a = \beta +a α+a=a=β+a那么 α + β = β + α = β = α \alpha + \beta = \beta + \alpha = \beta = \alpha α+β=β+α=β=α

(2)单位元必唯一:

假设 α , β ∈ S \alpha,\beta\in S α,βS ∀ a ∈ S \forall a \in S aS,都有 α a = β a = a \alpha a = \beta a = a αa=βa=a那么 α β = β α = β = α \alpha\beta = \beta\alpha = \beta = \alpha αβ=βα=β=α

(3)相反元必唯一:

∀ a ∈ S \forall a \in S aS a + b = 0 = a + c a+b=0=a+c a+b=0=a+c,那么 a + b + c = 0 + c = c = a + ( b + c ) = a + ( c + b ) = a + c + b = 0 + b = b a+b+c=0+c=c=a+(b+c)=a+(c+b)=a+c+b=0+b=b a+b+c=0+c=c=a+(b+c)=a+(c+b)=a+c+b=0+b=b

(4)逆元必唯一:

∀ a ∈ S , a ≠ 0 \forall a \in S,a\neq 0 aS,a=0 a b = a c = 1 ab=ac=1 ab=ac=1,那么 a b c = a ( b c ) = a ( c b ) = ( a c ) b = 1 c = c = 1 b = b abc=a(bc)=a(cb)=(ac)b=1c=c=1b=b abc=a(bc)=a(cb)=(ac)b=1c=c=1b=b

数域就构成一个代数系统,概括了有理数域、实数域和复数域之间共有的本质的运算性质。并且,有理数、实数和复数是扩充的关系,作为集合,就有如下的包含关系: Q ⊂ R ⊂ C Q\subset R\subset C QRC我们知道,每一次数系的扩充,都是一次运算的解放:从正整数到整数的扩充,带来了减法运算的解放;从整数到有理数的扩充,带来了除法运算的解放;从有理数到实数域的扩充,带来了极限运算的解放;而从实数域到复数域的扩充,则带来了根式运算的解放。我们知道,一元二次方程的求根公式为 − b ± b 2 − 4 a c 2 a \frac{-b\pm \sqrt{b^2-4ac}}{2a} 2ab±b24ac b 2 − 4 a c < 0 b^2-4ac<0 b24ac<0时,在实数域上是无法开根的,然而,扩充到复数域就可以进行开根运算,一元二次方程在复数域上就必然有两个解。根式运算的完备性,对于代数方程的求解是至关重要的!
接下来,我们给出复数的几何意义,我们知道,复数由实部和虚部共同决定,复数也和平面上点构成一一对应的关系。这样,复数的加法实际上就是平面上向量的加法。复数的模就定义为对应平面上向量的长度,即: ∣ a + b i ∣ = a 2 + b 2 |a+bi|=\sqrt{a^2+b^2} a+bi=a2+b2 复数的幅角定义为x轴正向与 c c c的夹角,记为 arg ⁡ c \arg{c} argc,如果 c = a + b i c=a+bi c=a+bi,就有: arg ⁡ c = { arctan ⁡ b a a > 0 , b ≥ 0 π 2 a = 0 , b > 0 π + arctan ⁡ b a a < 0 , b ≥ 0 arctan ⁡ b a a > 0 , b < 0 − π 2 a = 0 , b < 0 − π + arctan ⁡ b a a < 0 , b < 0 \arg{c}=\begin{cases} \arctan{\frac{b}{a}}&a>0,b\ge0\\ \frac{\pi}{2}&a=0,b>0\\ \pi+\arctan{\frac{b}{a}}&a<0,b\ge0\\ \arctan{\frac{b}{a}}&a>0,b<0\\ -\frac{\pi}{2}&a=0,b<0\\ -\pi+\arctan{\frac{b}{a}}&a<0,b<0 \end{cases} argc=arctanab2ππ+arctanabarctanab2ππ+arctanaba>0,b0a=0,b>0a<0,b0a>0,b<0a=0,b<0a<0,b<0可以合并成以下五种情况:
arg ⁡ c = { arctan ⁡ b a a > 0 π 2 a = 0 , b > 0 − π 2 a = 0 , b < 0 π + arctan ⁡ b a a < 0 , b ≥ 0 − π + arctan ⁡ b a a < 0 , b < 0 \arg{c}=\begin{cases} \arctan{\frac{b}{a}}&a>0\\ \frac{\pi}{2}&a=0,b>0\\ -\frac{\pi}{2}&a=0,b<0\\ \pi+\arctan{\frac{b}{a}}&a<0,b\ge0\\ -\pi+\arctan{\frac{b}{a}}&a<0,b<0 \end{cases} argc=arctanab2π2ππ+arctanabπ+arctanaba>0a=0,b>0a=0,b<0a<0,b0a<0,b<0幅角、模和复数通过以下的欧拉公式沟通起来,规定 e i θ = cos ⁡ θ + sin ⁡ θ i e^{i\theta}=\cos{\theta}+\sin{\theta}i eiθ=cosθ+sinθi c = ∣ c ∣ e i θ = ∣ c ∣ cos ⁡ θ + ∣ c ∣ sin ⁡ θ i c=|c|e^{i\theta}=|c|\cos{\theta}+|c|\sin{\theta}i c=ceiθ=ccosθ+csinθi我们称这种表示法为指数表示法,接下来,我们来考虑指数表示法和复数乘法的关系。 ( r 1 e i θ 1 ) ( r 2 e i θ 2 ) = r 1 r 2 ( cos ⁡ θ 1 + i sin ⁡ θ 1 ) ( cos ⁡ θ 2 + i sin ⁡ θ 2 ) = r 1 r 2 [ ( cos ⁡ θ 1 cos ⁡ θ 2 − sin ⁡ θ 1 sin ⁡ θ 2 ) + i ( cos ⁡ θ 1 sin ⁡ θ 2 + sin ⁡ θ 1 cos ⁡ θ 2 ) ] = r 1 r 2 e i ( θ 1 + θ 2 ) (r_1e^{i\theta_1})(r_2e^{i\theta_2}) =r_1r_2(\cos{\theta_1}+i\sin{\theta_1}) (\cos{\theta_2}+i\sin{\theta_2})\\ =r_1r_2[(\cos{\theta_1}\cos{\theta_2}-\sin{\theta_1}\sin{\theta_2}) +i(\cos{\theta_1}\sin{\theta_2}+\sin{\theta_1}\cos{\theta_2})]\\ =r_1r_2e^{i(\theta_1+\theta_2)} (r1eiθ1)(r2eiθ2)=r1r2(cosθ1+isinθ1)(cosθ2+isinθ2)=r1r2[(cosθ1cosθ2sinθ1sinθ2)+i(cosθ1sinθ2+sinθ1cosθ2)]=r1r2ei(θ1+θ2)也就是说,在指数表示法下,指数乘法的性质和实数域上乘法的性质,在形式上是一致的。这方便我们求解复数的乘方。即: ( r e i θ ) n = r n e i ( n θ ) (re^{i\theta})^n=r^ne^{i(n\theta)} (reiθ)n=rnei(nθ)我们再给出共轭复数的概念: c ‾ = a + b i ‾ = a − b i \overline{c}=\overline{a+bi}=a-bi c=a+bi=abi共轭复数的指数表示为 c ‾ = ∣ c ∣ e − i arg ⁡ c \overline{c}=|c|e^{-i\arg{c}} c=ceiargc并且: c ‾ c = ∣ c ∣ 2 = a 2 + b 2 \overline{c}c=|c|^2=a^2+b^2 cc=c2=a2+b2最后我们给出共轭运算和复数乘法的关系: c 1 c 2 ‾ = c 1 ‾ . c 2 ‾ \overline{c_1c_2}=\overline{c_1}.\overline{c_2} c1c2=c1.c2只需要作简要的检验即可 ( a + b i ) ( c + d i ) ‾ = a c − b d + ( a d + b c ) i ‾ = a c − b d − ( a d + b c ) i = ( a − b i ) ( c − d i ) \overline{(a+bi)(c+di)} =\overline{ac-bd+(ad+bc)i} =ac-bd-(ad+bc)i =(a-bi)(c-di) (a+bi)(c+di)=acbd+(ad+bc)i=acbd(ad+bc)i=(abi)(cdi)这说明共轭和乘法运算是可交换的。

两类代数方程

代数学基本定理与多项式的根

本章简要介绍代数方程的解的一些理论。 K K K是一个数域, a 0 , a 1 , ⋯   , a n ∈ K a_0,a_1,\cdots,a_n\in K a0,a1,,anK,称方程 a 0 x n + a 1 x n − 1 + ⋯ + a n = 0 a_0x^n+a_1x^{n-1}+\cdots+a_n=0 a0xn+a1xn1++an=0 K K K上的代数方程,其中 a 0 ≠ 0 a_0\neq 0 a0=0

当然,我们并没有规定方程的解一定是 K K K中的数,但是,方程的解必定与数域有关,在不同的数域上,方程解的情况是不同的。举例来说: x 2 − 1 = 0 x^2-1=0 x21=0在有理数域上就有两个不同的根 ± 1 \pm 1 ±1,但是 x 2 − 2 = 0 x^2-2=0 x22=0就在有理数域上没有根,但是在实数域上有两个不同的根 ± 2 \pm \sqrt{2} ±2 ,再考虑方程 x 2 + 1 = 0 x^2+1=0 x2+1=0方程在实数域没有根,在复数域有一对共轭的根 ± i \pm i ±i,之所以在实数域没有根,是实数域上负数不能开根,这一限制使得实数域对开根运算不是封闭的,扩充到复数域上,就能找到两个根,因而,求解代数方程,数域是至关重要的。复数域对加减乘除和开根运算都封闭,对于求解代数方程而言,已然是足够的,下面,我给不加证明地给出代数基本定理。
定理1.1(代数基本定理) K K K( Q , R , C Q,R,C Q,R,C)是一个数域, a 0 , a 1 , ⋯   , a n ∈ K a_0,a_1,\cdots,a_n\in K a0,a1,,anK,代数方程 a 0 x n + a 1 x n − 1 + ⋯ + a n = 0 a_0x^n+a_1x^{n-1}+\cdots+a_n=0 a0xn+a1xn1++an=0必有一个复根

该定理的证明要用到复变函数论的知识,不是在线性代数的范畴内,这里就不给出代数基本定理的证明。下面我们统一讨论复数域上的多项式,代数方程的根与多项式的因式分解密切相关:
引理1.1 a 0 , a 1 , ⋯   , a n ∈ C a_0,a_1,\cdots,a_n\in C a0,a1,,anC,对复数域上的多项式 f ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n f(x)=a0xn+a1xn1++an对任意的复数 a ∈ C a\in C aC,存在 n − 1 n-1 n1次多项式 q ( x ) q(x) q(x),有 f ( x ) = ( x − a ) q ( x ) + f ( a ) f(x)=(x-a)q(x)+f(a) f(x)=(xa)q(x)+f(a)

推论1.1 a 0 , a 1 , ⋯   , a n ∈ C a_0,a_1,\cdots,a_n\in C a0,a1,,anC,对复数域上的多项式 f ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n f(x)=a0xn+a1xn1++an如果 a a a是代数方程 f ( x ) = 0 f(x)=0 f(x)=0的根,则存在 C C C上的 n − 1 n-1 n1次多项式 q ( x ) q(x) q(x) f ( x ) = q ( x ) ( x − a ) f(x)=q(x)(x-a) f(x)=q(x)(xa)

定理1.2 C C C上的 n n n次代数方程 a 0 x n + a 1 x n − 1 + ⋯ + a n = 0 a_0x^n+a_1x^{n-1}+\cdots+a_n=0 a0xn+a1xn1++an=0必有 n n n个复根 c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn,并且 f ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n = a 0 ( x − c 1 ) ⋯ ( x − c n ) f(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n =a_0(x-c_1)\cdots(x-c_n) f(x)=a0xn+a1xn1++an=a0(xc1)(xcn)

证:
用数学归纳法证明: n = 1 n=1 n=1时定理成立,假设对 k k k次多项式 p ( x ) = a 0 x k + ⋯ + a k p(x)=a_0x^k+\cdots+a_k p(x)=a0xk++ak,并有 k k k个复数 c 1 , ⋯   , c k c_1,\cdots,c_k c1,,ck p ( x ) = 0 p(x)=0 p(x)=0 k k k个根,并且 p ( x ) = a 0 ( x − c 1 ) ⋯ ( x − c k ) p(x)=a_0(x-c_1)\cdots(x-c_k) p(x)=a0(xc1)(xck) k + 1 k+1 k+1次多项式 f ( x ) = a 0 x k + 1 + a 1 x k + ⋯ + a k + 1 f(x)=a_0x^{k+1}+a_1x^k+\cdots+a_{k+1} f(x)=a0xk+1+a1xk++ak+1,其中 a 0 ≠ 0 a_0\neq 0 a0=0,由代数基本定理, f ( x ) = 0 f(x)=0 f(x)=0必有一根 c k + 1 c_{k+1} ck+1,于是 f ( x ) = a 0 ( x − c k + 1 ) q ( x ) f(x)=a_0(x-c_{k+1})q(x) f(x)=a0(xck+1)q(x)其中 q ( x ) q(x) q(x)是首项为 1 1 1 k k k次多项式,由归纳假设,又存在 c 1 , ⋯   , c k c_1,\cdots,c_k c1,,ck,使得 q ( x ) = ( x − c 1 ) ⋯ ( x − c k ) q(x)=(x-c_1)\cdots(x-c_k) q(x)=(xc1)(xck)于是 f ( x ) = a 0 ( x − c 1 ) ⋯ ( x − c k + 1 ) f(x)=a_0(x-c_1)\cdots(x-c_{k+1}) f(x)=a0(xc1)(xck+1)由构造 c 1 , ⋯   , c k + 1 c_1,\cdots,c_{k+1} c1,,ck+1 f ( x ) = 0 f(x)=0 f(x)=0 k + 1 k+1 k+1个根

当然, n n n次方程的 n n n个根可以有重复的根,这样, n n n次复多项式 p ( x ) = a 0 x n + a 1 x n − 1 + ⋯ + a n p(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n p(x)=a0xn+a1xn1++an就可以因式分解为 p ( x ) = a 0 ∏ i = 1 m ( x − c i ) k i p(x)=a_0\prod_{i=1}^{m}{(x-c_i)^{k_i}} p(x)=a0i=1m(xci)ki k i k_i ki称为 c i c_i ci的重数,并且 ∑ i = 1 m k i = n \sum_{i=1}^m{k_i}=n i=1mki=n

方程的根和方程的系数有何关系呢?对 n n n次多项式 p ( x ) = a 0 x n + ⋯ + a n p(x)=a_0x^n+\cdots+a_n p(x)=a0xn++an,存在 n n n次复数(允许重复) c 1 , ⋯   , c n c_1,\cdots,c_n c1,,cn,就有 p ( x ) = a 0 ( x − c 1 ) ⋯ ( x − c n ) p(x)=a_0(x-c_1)\cdots(x-c_n) p(x)=a0(xc1)(xcn)按排列组合的观点看, ( x − c 1 ) ⋯ ( x − c n ) (x-c_1)\cdots(x-c_n) (xc1)(xcn)的所有一次项相当于有1个括号取x,其余 n − 1 n-1 n1个括号取 − c i -c_i ci,于是启发我们: a i = a 0 ∑ 1 ≤ k 1 < ⋯ < k i ≤ n ( − 1 ) i c k 1 ⋯ c k i a_{i} = a_0\sum_{1\le k_1 <\cdots<k_i \le n}{ (-1)^i c_{k_1}\cdots c_{k_i} } ai=a01k1<<kin(1)ick1cki δ i ( c 1 , ⋯   , c n ) = ∑ 1 ≤ k 1 < ⋯ < k i ≤ n ( − 1 ) i c k 1 ⋯ c k i \delta_i(c_1,\cdots,c_n) = \sum_{1\le k_1 <\cdots<k_i \le n}{ (-1)^i c_{k_1}\cdots c_{k_i} } δi(c1,,cn)=1k1<<kin(1)ick1cki就有
p ( x ) = a 0 ∑ i = 0 n δ i ( c 1 , ⋯   , c n ) x n − i p(x)=a_0\sum_{i=0}^n{\delta_i(c_1,\cdots,c_n)x^{n-i}} p(x)=a0i=0nδi(c1,,cn)xni该定理的证明可以用数学归纳法,比较简单,这里省略。我们看看该定理在 n = 2 n=2 n=2时的情形:对二次方程 x 2 + a 1 x + a 2 = 0 x^2+a_1x+a_2=0 x2+a1x+a2=0其中 a 1 , a 2 ∈ C a_1,a_2\in C a1,a2C,方程必有两个复根 c 1 , c 2 c_1,c_2 c1,c2,于是: a 1 = − c 1 − c 2 a_1 = -c_1-c_2 a1=c1c2 a 2 = c 1 c 2 a_2=c_1c_2 a2=c1c2这实际上就是二次方程的韦达定理。

下面我们来讨论实数域上的代数方程及多项式, a 0 , ⋯   , a n ∈ R a_0,\cdots,a_n\in R a0,,anR,假设 c c c是实代数方程 a 0 x n + ⋯ + a n = 0 a_0x^n+\cdots+a_n=0 a0xn++an=0的根,由共轭运算和乘法运算的关系,其共轭 c ‾ \overline{c} c也是方程的根,而 ( x − c 1 ) ( x − c 2 ) = x 2 − ( c 1 + c 2 ) x + c 1 c 2 (x-c_1)(x-c_2)=x^2-(c_1+c_2)x+c_1c_2 (xc1)(xc2)=x2(c1+c2)x+c1c2的系数都是实数,再由数学归纳法可以推出,实系数代数方程的根必然有一对对互为共轭的根构成,同时
定理1.3 奇数次实代数方程必有一个实根
有关多项式环的理论,我们在后面再作详细论述。

线性方程组的高斯消元法

接下来我们介绍的是和线性代数密切相关的线性方程组
{ a 11 x 1 + ⋯ + a 1 n x n = b 1 ⋯ a m 1 x 1 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_1+\cdots+a_{1n}x_n=b_1\\ \cdots\\ a_{m1}x_1+\cdots+a_{mn}x_n=b_m \end{cases} a11x1++a1nxn=b1am1x1++amnxn=bm实际上,我们在中学,已经接触了求解线性方程组的方法,也就是消元与回代。所谓的消元法,就是通过以下三种操作减少方程的变元。
(1)调换两个方程的位置
(2)一个方程加上另一个方程的k倍
(3)一个方程左右两边乘以一个非零常数
我们称为线性方程组的初等变换,方程的初等变换是可逆的,这样就容易证明初等变换前后方程的解是不变的。

下面我们给出一例求解方程组的例子:
例1.1 求解方程组
{ 2 x 2 − x 3 = 1 x 1 − x 2 + x 3 = 0 2 x 1 + x 2 − x 3 = − 2 \begin{cases} 2x_2-x_3 = 1\\ x_1-x_2+x_3=0\\ 2x_1+x_2-x_3=-2 \end{cases} 2x2x3=1x1x2+x3=02x1+x2x3=2

解:
第1步:调换第一个方程和第二个方程
{ x 1 − x 2 + x 3 = 0 0 x 1 + 2 x 2 − x 3 = 1 2 x 1 + x 2 − x 3 = − 2 \begin{cases} x_1-x_2+x_3=0\\ 0x_1+2x_2-x_3=1\\ 2x_1+x_2-x_3=-2 \end{cases} x1x2+x3=00x1+2x2x3=12x1+x2x3=2第2步,第三个方程减去第一个方程的2倍
{ x 1 − x 2 + x 3 = 0 0 x 1 + 2 x 2 − x 3 = 1 0 x 1 + 3 x 2 − 3 x 3 = − 2 \begin{cases} x_1-x_2+x_3=0\\ 0x_1+2x_2-x_3=1\\ 0x_1+3x_2-3x_3=-2 \end{cases} x1x2+x3=00x1+2x2x3=10x1+3x23x3=2第3步,第三个方程除以3后和第二个方程交换位置
{ x 1 − x 2 + x 3 = 0 0 x 1 + x 2 − x 3 = − 2 3 0 x 1 + 2 x 2 − x 3 = 1 \begin{cases} x_1-x_2+x_3=0\\ 0x_1+x_2-x_3=-\frac{2}{3}\\ 0x_1+2x_2-x_3=1 \end{cases} x1x2+x3=00x1+x2x3=320x1+2x2x3=1第4步,第一个方程加上第二个方程,第三个方程减去第二个方程的2倍
{ x 1 + 0 x 2 + 0 x 3 = − 2 3 x 2 − x 3 = − 2 3 x 3 = 7 3 \begin{cases} x_1+0x_2+0x_3=-\frac{2}{3}\\ x_2-x_3=-\frac{2}{3}\\ x_3 = \frac{7}{3} \end{cases} x1+0x2+0x3=32x2x3=32x3=37最后一步,第二个方程加上第三个方程,就得到 x 1 = − 2 3 , x 2 = 5 3 , x 3 = 7 3 x_1=-\frac{2}{3},x_2=\frac{5}{3},x_3=\frac{7}{3} x1=32,x2=35,x3=37

以上求解过程,实际上与 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3无关,只与系数和右端的常数项有关。我们把这些数字抽象出来,称为一个数表
[ a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n b m ] \left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m \end{matrix} \right] a11a21am1a12a22am2a1na2namnb1b2bm m n mn mn K K K中的数排成 m m m n n n列的数表,称为 m × n m\times n m×n矩阵,上面的矩阵称为方程组的增广矩阵,如果 b 1 = ⋯ = b m b_1=\cdots=b_m b1==bm,称方程组为齐次线性方程组,此时方程组的求解甚至与常数项无关,只与矩阵
[ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n ] \left[ \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \cdots&\cdots&\cdots&\cdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{matrix} \right] a11a21am1a12a22am2a1na2namn有关,称为方程组的系数矩阵,则方程组的初等变换相当于矩阵的如下操作
(1)交换矩阵的两行
(2)某一行乘以非零常数
(3)某一行加上另一行的k倍
以上三个变换称为矩阵的初等行变换,求解方程组的过程,就相当于对增广矩阵进行初等行变换,称为矩阵消元法,又称为高斯消元法。任何矩阵都可以通过初等行变换化为行阶梯状,再补充上变元,进行回代,就可以解出线性方程组。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值