先说在最前面,博主不是数学专业的,是计算机类的,所以可能数学的语言的准确性和证明的严密性都不足。
一、行列式是什么?
由线性方程组推出行列式
用行列式去解线性方程组
二元线性方程组
式1
其中行列式就可以抽象为这两个方程组的系数
其中一个未知数的表达式如下:
式2
用行列式表示:
式3
记住这个前提条件!!!!!!!!
式4
推广到多阶行列式的时候,公式4里面的未知量就变换为线性方程组等号左边的未知量即可。
本质上其他线性方程组的解都可以由于二元线性方程组推出,只需要替换分式上下的值就行了。
二、排列
由1,2,3,....,n组成的有序数组称为一个n阶排列。
n阶排序的总数是:n!
定义1:前面的数大于后面的数 就叫逆序数
定义2:一个排列中逆序的总数就叫做逆序数
定义3:逆序数为偶数的为偶排列,奇数的为奇排列
定理1:对换改变排列的奇偶性:奇变偶,偶变奇
定理2:任意一个n阶排列与排列12.....n都可以经过一系列对换互变,并且所作对换个数与这个排列有相同的奇偶性。