算法
YakultGo
这个作者很懒,什么都没留下…
展开
-
百面机器学习笔记(更新ing~~~)
第一章 特征工程01 特征归一化 Q:为什么需要对数值类型的特征做归一化? A:对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。最常用的方法主要有以下两种。线性函数归一化Xnorm=X−XminXmax−XminX_{norm} = \frac{X-X_{min}}{X_{max}-X_{min}}Xnorm=Xmax−XminX−Xmin其中X为原始数据,Xmax、XminX_{max}、X_{min}Xmax、Xmin分别为数据最大值和数.原创 2020-11-21 09:58:09 · 347 阅读 · 0 评论 -
【学习笔记】统计学习方法——HMM
摘要: 隐马尔可夫模型(hidden Markov model,HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型。隐马尔可夫模型在语音识别,自然语言处理,生物信息,模式识别等领域有着广泛的应用。1、马尔科夫模型与HMM 要讲隐马尔科夫模型,需要先从马尔科夫模型讲起。已知N个有序随机变量,根据贝叶斯定理,他们的联合分布可以写成条件分布的连乘积:P(x1,x2,⋯ ,xN)=∏n=1NP(xn∣xn−1,⋯ ,x1)(1)P(x_1,x_2,\cdot原创 2020-09-09 14:39:58 · 315 阅读 · 0 评论 -
【学习笔记】统计学习方法——EM算法
title: 统计学习方法——EM算法及其推广mathjax: truedate: 2020-09-02 16:38:15tags: 统计学习方法categories: 算法1、摘要EM算法是一种迭代算法,1977年由Dempster等人总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。所以这一算法称为期望极大算法(expe.原创 2020-09-04 15:35:11 · 753 阅读 · 0 评论 -
动态规划
1 概念 **动态规划**算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。在学习动态规划之前需要明确掌握几个重要概念。**阶段:**对于一个完整的问题过程,适当的切分为若干个相互联系的子问题,每次在求解一个子问题,则对应一个阶段,整个问题的求解转化为按照阶段次序去求解。**状态:**状态表示每个阶段开始时所处的客观条件,即在求解子问题时的已知条件。状态描述了研究的问题过程中的状况。**决策:**决策表示当求解过程处于某一阶段的某一状态时,可以根据当原创 2020-08-21 12:51:41 · 333 阅读 · 0 评论 -
分治
分治算法的原理分治算法的原理可以用二叉树表示。假设给定的问题不能够被直接了当地解决。这时,我们可以将原问题分成相互独立的两个子问题。如果能将这两个子问题解决,那我们就离原问题的解不远了。如果子问题还是复杂问题的话,我们就继续分解,直到子问题满足边界条件,小到可以直接得出答案为止。得到最小子问题的解后,我们往上递回,将子问题的解层层合并,最终获得原问题的解。我们不一定每一次都将原问题分成两个子问题。根据问题的需要,我们可以将原问题分成 k 个子问题, k>1。分治法适用的情况原问题的计算复杂原创 2020-08-19 13:34:02 · 113 阅读 · 0 评论