- 博客(13)
- 收藏
- 关注
原创 Yolo v4-keras下的物体识别学习
目录一、本次学习所需准备二、yolov4.weights的h5模型转换1.修改包中convert.py代码内容一、本次学习所需准备YoloV4-Keras包的下载、yolov4.weights下载、VOC训练集和测试集下载(这些资源的下载不是很难,这里就不一一列举了,大家可以找找相关博客)注意:yolov4.weights下载后上传至YoloV4-Keras的包中接下来进入学习的重点:二、yolov4.weights的h5模型转换1.修改包中convert.py代码内容...
2020-07-11 13:04:24 562
原创 人脸微笑识别和口罩识别模型训练和测试(卷积神经网络CNN)及实时的微笑和口罩识别
目录一、人脸微笑识别1.准备工作2.genki4k笑脸数据集准备导入需要的包划分数据集3.网络模型4.数据预处理5.开始训练6.数据增强7.创建新的网络8.对单张图片的笑脸测试二、口罩识别1.数据准备2.网络模型3.数据预处理4.开始训练5.使用数据增强6.对单张人物测试是否戴了口罩三、摄像头实时采集人脸、并对表情(笑脸/非笑脸)、戴口罩和没戴口罩的实时分类判读(输出分类文字)1.笑脸实时检测识别2.是否戴口罩的实时检测识别一、人脸微笑识别1.准备工作需要安装tensorflow、keras以及dli
2020-07-07 14:21:34 6216 6
原创 ROS机器人定位导航仿真——智能车
目录标题一、racecar功能包安装1.racecar功能包下载2、安装该功能包运行需要的控件3.racecar功能包编译4.运行小车模型launch文件二、 在功能包自带赛道里运行1.加载赛道,控制小车进行位移2、进行gmapping建图三、自己进行赛道搭建实现小车自主定位导航1..创建手工导航launch文件四、自动导航1.启动导航和环境地图2.启动rviz3.用2D Nav Goal发布目标4.启动导航脚本一、racecar功能包安装1.racecar功能包下载新建终端进入racecar工作空间
2020-07-01 13:48:42 2743 1
原创 训练猫狗数据集(及图像增强后训练)
rotation_range是以度(0-180)为单位的值,它是随机旋转图片的范围。width_shift和height_shift是范围(占总宽度或高度的一小部分),用于纵向或横向随机转换图片。shear_range用于随机剪切变换。zoom_range用于随机放大图片内容。horizontal_flip用于在没有水平不对称假设(例如真实世界图片)的情况下水平地随机翻转一半图像。
2020-06-12 11:40:33 3728 1
原创 机器学习——支持向量机(SVM)
目录一、支持向量机1.简介2.线性SVM3.非线性SVM一级目录二级目录一级目录二级目录一、支持向量机1.简介支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的基本思想是SVM从线性可分情况下的最优分类面发展而来。最优分类面就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。SVM考虑寻找一个满足分类
2020-05-25 18:00:24 2376
原创 python下对鸢尾花数据集和月亮数据集,分别采用线性LDA、k-means和SVM算法进行二分类可视化分析
目录一、线性LDA法1.LDA内涵2.处理鸢尾花数据集3.处理月亮数据集二、k-means法1.k-means内涵2.处理鸢尾花数据集3.处理月亮数据集三、SVM算法1.SVM算法内涵2.处理鸢尾花数据集3.处理月亮数据集四、浅谈SVM算法的优缺一、线性LDA法1.LDA内涵LDA 是一种可作为特征抽取的技术,其目标是向最大化类间差异,最小化类内差异的方向投影,以利于分类等任务即将不同类的样本有效的分开。LDA 可以提高数据分析过程中的计算效率,对于未能正则化的模型,可以降低维度灾难带来的过拟合。2
2020-05-18 17:35:22 1407
原创 ORB特征匹配——图片序列
目录一、下载并解压kitti_Image数据集二、代码部分三、结果展示一、下载并解压kitti_Image数据集我放到了这次完成项目的文件夹下二、代码部分1.在目录下新建一个computeORB2.cpp文件并写入代码gedit computeORB2.cpp完整代码如下:#include <opencv2/opencv.hpp> #include <iost...
2020-05-07 22:54:54 453
原创 线性分类器——Fisher线性判别
Fisher线性判别1.Fisher线性判别步骤2.实现代码1.Fisher线性判别步骤Fisher线性判别分析的基本思想:选择一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,同时变换后的一维数据满足每一类内部的样本尽可能聚集在一起,不同类的样本相隔尽可能地远。Fisher线性判别分析,就是通过给定的训练数据,确定投影方向W和阈值w0, 即确定线性判别函数,然后根据这个线...
2020-05-07 14:51:08 4776
原创 MNIST数据集学习
目录一、MNIST数据介绍首先,我们使用sklearn的函数来获取MNIST数据集(主要是代码)二、训练一个二分类器三、性能考核使用交叉验证测量精度混淆矩阵精度和召回率精度/召回率权衡ROC曲线一、MNIST数据介绍本章使用MNIST数据集,这是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。这个数据集被广为使用,因此也被称作是机器学习领域的“He...
2020-04-28 16:14:12 6576 4
原创 凸优化基础
凸优化基础凸优化基础1.计算几何的研究方向2.计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?3.凸集是什么?直线是凸集吗?直线是仿射集吗?4.三维空间中的一个平面,如何表达?5.更高维度的“超平面”,如何表达?6.什么是“凸函数”定义?什么是Hessen矩阵?如何判别一个函数是凸函数?f(x)=x^3 函数是凸函数吗?7.什么是“凸规划”?如何判别一个规划问题是凸规划问题。举例...
2020-04-22 19:59:43 366
原创 使用单纯形法,scipy库和拉格朗日乘子法求解线性规划最大值和最优解问题
使用jupyter notebook通过单纯形法和scipy库对比分析求解线性规划最大值和最优解问题一、单纯形法1、单纯形法的定义2.基本思想3.单纯形法的解题步骤二、求解例题1、求解以下约束条件的线性规划的最大值和最优解2.求解步骤一、单纯形法1、单纯形法的定义单纯形法 simplex method 求解线性规划问题的通用方法。单纯形是美国数学家G.B.丹齐克于1947年首先提出来的。它的...
2020-04-21 15:08:51 2658
原创 ubuntu16.04上ORB_SLAM2的安装及配置使用
ubuntu16.04上ORB_SLAM2的安装及配置使用一、安装Pangolin1、安装下载及编译2.安装依赖3.安装Pangolin二、安装opencv1.安装依赖项2. 在OpenCV官网(http://opencv.org)下载OpenCV 2.4.11的source版本,然后解压到本地并编译3.安装Eigen3,它是一个开源线性库,可进行矩阵运算三、ORB_SLAM2在ROS下的安装及配...
2020-04-18 22:13:49 1505
原创 使用Jupyter Notebook实现梯度下降法和牛顿法求解多元线性回归问题
牛顿法、梯度下降法原理及Python编程应用一、使用梯度下降法实现求解多元线性回归方程二、使用牛顿迭代法实现求解多元线性回归方程三、两种方法对比分析一、使用梯度下降法实现求解多元线性回归方程1. 梯度下降法原理梯度下降法应用一阶泰勒展开,假设L(θ)代表损失函数,目标:最小化损失函数,θ是需要更新的模型参数。下面公式中alpha是步长(学习率),可以直接赋值一个小的数,也可以通过lin...
2020-04-06 15:40:33 1412
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人