Yolo v4-keras下的物体识别学习

一、本次学习所需准备

Ubuntu下所需环境:Tensorflow2.2、keras、opencv-python
YoloV4-Keras包的下载、yolov4.weights下载、VOC训练集和测试集下载
(这些资源的下载不是很难,这里就不一一列举了,大家可以找找相关博客)
注意:yolov4.weights下载后上传至YoloV4-Keras的包中
接下来进入学习的重点:

二、开始测试

1、修改test.py代码
打开并编辑yolo v4-keras包下的test.py文件

gedit test.py

解决python默认路径问题,在代码开头添加如下代码

import sys
sys.path.remove('/opt/ros/kinetic/lib/python2.7/dist-packages')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值