暑假集训日记——7.16(单调栈/单调队列+codeforce)

D - Fence
题意:
K个人对N块木板涂色,每个人初始站在一块木板前(不重复),每人最多只能涂包含所站木板的连续l个木板或一个木板也不涂。给出每人最多涂的木块数l,涂一快木板的工钱p,站的木板s。求这群人最多共获得多少工钱。
题解:dp+单调队列
d p [ i ] [ j ] dp[i][j] dp[i][j]表示第 i个工人刷到了第 j面墙。
状态转移方程
d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ k ] + ( j − k ) ∗ p [ i ] ) ; j − l [ i ] &lt; = k &lt; s [ i ] ; dp[i][j]=max(dp[i-1][k]+(j-k)*p[i]); j-l[i]&lt;=k&lt;s[i]; dp[i][j]=max(dp[i1][k]+(jk)p[i]);jl[i]<=k<s[i];
然后转化为 d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ k ] − k ∗ p [ i ] ) + j ∗ p [ i ] ; dp[i][j]=max(dp[i-1][k]-k*p[i])+j*p[i]; dp[i][j]=max(dp[i1][k]kp[i])+jp[i];
用单调队列维护 m a x ( d p [ i − 1 ] [ k ] − k ∗ p [ i ] ) max(dp[i-1][k]-k*p[i]) max(dp[i1][k]kp[i])
注意初始化的位置!!!

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;

const int MAXN=20010;
const int INF=0x3f3f3f3f;

struct node
{
    int l,s,p;
}v[1010],w[1010]; //x表示值,y表示位置 可以理解为下标

bool cmp(node a, node b)
{
     return a.s < b.s;
}

int a[MAXN];
int dp[110][MAXN];

int main()
{
    int t,n,p,k;
    while(scanf("%d%d", &n, &k)!= EOF){

        for(int i=1;i<=k;i++)
            scanf("%d%d%d",&w[i].l,&w[i].p,&w[i].s);
        for(int i=0;i<=k;i++)
            for(int j=0;j<=n;j++) dp[i][j]=0;

        dp[0][0]=0;
        sort(w+1,w+k+1,cmp);
        for(int i=1;i<=k;i++)
        {
            int head=1,tail=0;
            for(int j=0;j<=n;j++)
            {
                if(j>=1)dp[i][j]=max(dp[i-1][j],dp[i][j-1]);///如果第i个工人不用干活
                
                if(j>=max(0,w[i].s-w[i].l)&&j<w[i].s)//先进行初始化
                {
                    while(head<=tail && v[tail].l<=dp[i-1][j]-j*w[i].p) tail--;
                    v[++tail].l=dp[i-1][j]-j*w[i].p,v[tail].s=j;
                }

                if(j>=w[i].s&&w[i].s+w[i].l-1>=j)
                {
                    while(head<=tail&&v[head].s+w[i].l<j) head++;
                    if(head<=tail)
                    dp[i][j]=max(dp[i][j],v[head].l+w[i].p*j);
                }

            }

        }
        printf("%d\n",dp[k][n]);

    }
}

C. Maximal GCD
题意:给出数字N和K,要求构造出K个严格递增的数字,是他们的和为N,且这K个数字的最大公因数最大
题解:注意循环的范围,注意特判,剩下的就是简单模拟

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<map>
#include<iterator>
#include<queue>
#include<vector>
#include<string>
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, int> pli;
typedef pair<ll, ll> pll;
typedef long double ld;
#define mp make_pair

const int N=1e6;
const int INF=0x3f3f3f3f;
const double eps=0.0000001;
const ll mod=1e9+7;
ll mul(ll a,ll b){return (a%mod*b%mod)%mod;}
ll pre(ll a,ll b){return (a%mod/b%mod)%mod;}
ll n,m,k,x,y,z;
int a[N];
int vis[N];

vector<int>p;
int main()
{
   ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
   cin>>n>>m;
   ll ans;
   if(m%2==0)
    ans=m/2*(m+1);
   else
    ans=(m+1)/2*m;
    ll p=0;
    if(ans>n||m>141421)//特判,超出数据
    {
        cout<<-1<<endl;
        return 0;
    }
    if(ans*2>n)
    {
        p=1;
    }
    else
    for(ll i=1;i*i<=n;i++)//比ans—n的范围快太多......
    {
        if(n%i==0&&n/i>=ans)///防止溢出
        {
            p=max(p,i);
        }
        if(i>=ans&&n%i==0)
        {
            p=max(p,n/i);
        }
    }
    if(p==0)
        cout<<-1<<endl;
    else
    {
        for(ll i=1;i<=m-1;i++)
        printf("%lld ",p*i),n-=p*i;
         printf("%lld ",n);
    }


}

D. Magazine Ad
题意:
给你一段字符串,可以有空格和‘-’来分割,让你确定在分组数目小于等于k的情况下, 最小的分组宽度
题解:二分

#include<algorithm>
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<map>
#include<iterator>
#include<queue>
#include<vector>
#include<string>
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, int> pli;
typedef pair<ll, ll> pll;
typedef long double ld;
#define mp make_pair

const int N=1e6;
const int INF=0x3f3f3f3f;
const double eps=0.0000001;
const ll mod=1e9+7;
ll mul(ll a,ll b){return (a%mod*b%mod)%mod;}
ll pre(ll a,ll b){return (a%mod/b%mod)%mod;}
ll n,m,k,x,y,z;
int a[N];
int vis[N];
string str;

int slove(int x,int y)
{
    int xx=x,cnt=1;
    for(int i=1;i<=y;i++)
    {
        if(x<a[i]) return 0;
        if(xx<a[i])
        {
            cnt++;
            xx=x;
            xx-=a[i];
        }
        else
        {
            xx-=a[i];
        }
    }
    if(cnt<=n)
        return 1;
    else
        return 0;
}

vector<int>p;
int main()
{
   //ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
   cin>>n; getchar();
   getline(cin, str);
   int cnt=0,ans=0;
   int len=str.length();//cout<<str<<endl;
   for(int i=0;i<len;i++)
   {
       if(str[i]=='-'||str[i]==' ')
        {
            cnt++;
            a[cnt]=i-ans+1;
            ans=i+1;
        }
   }
   cnt++;
   a[cnt]=len-ans;
   int l=1,r=len,mid;
   int p=0;
   while(l<=r)
   {
       mid=(l+r)/2;
       if(slove(mid,cnt))
       {
           r=mid-1;
           p=mid;
       }
       else
       {
           l=mid+1;
       }
   }
   cout<<p<<endl;

}

E - Dividing the Path
题意:
有一块长度为 l l l的草原,你需要用洒水器把所有草坪都覆盖并且每块草坪只能被覆盖一次,有 n n n个奶牛所在的草坪属于 [ l , r ] [l,r] [l,r],这些区间只能有一个洒水器;
题解:dp+单调队列
动态转移方程: f [ i ] = m i n ( f [ j ] + 1 ) f[i]=min(f[j]+1) f[i]=min(f[j]+1) ( A &lt; = ( i − j ) / 2 &lt; = B ) (A&lt;=(i−j)/2&lt;=B) (A<=(ij)/2<=B)
初始化时只需要处理 i − 2 a i-2a i2a 处的 d p dp dp 值即可,因为要遍历 1 − m 1-m 1m
所以处理过的 i − 2 a = j − 2 b i-2a=j-2b i2a=j2b,所以 vis[i] 要在初始化后判断

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;

const int MAXN=1e6+10;
const int INF=0x3f3f3f3f;

struct node
{
    int l,s,p;
}v[MAXN];

bool cmp(node a, node b)
{
     if(a.l==b.l)
        return a.s > b.s;
    return a.l<b.l;
}

int vis[MAXN];
int dp[MAXN];

///f[i]=min(f[j]+1)(A<=(i−j)/2<=B)

int main()
{
    int t,n,m,p,k,a,b;
    scanf("%d%d",&n,&m);
    scanf("%d%d",&a,&b);
    for(int i=1;i<=n;i++)//标记不能作为左右端点的坐标
    {
        scanf("%d%d",&p,&k);
        for(int i=p+1;i<=k-1;i++)
            vis[i]=1;
    }
    memset(dp,INF,sizeof(dp));
    dp[0]=0;
    int head=1,tail=0,j=0;
    for(int i=2*a;i<=m;i+=2)
    {

        j=i-2*a;
        while(head<=tail && v[tail].l>=dp[j]&&vis[j]!=1) tail--;//初始化
        v[++tail].l=dp[j],v[tail].s=j;

        if(vis[i]) continue;

        while(head<=tail&&i-v[head].s>2*b) head++;//(i-2b,i-2a)范围内的单调队列
        if(head<=tail)
            dp[i]=min(dp[i],v[head].l+1);
    }
    if(dp[m]!=INF)printf("%d\n",dp[m]);
    else printf("-1\n");
}

当只涉及 一个状态转移方程时可以不用加 m i n / m a x min/max min/max

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;

const int MAXN=1e6+10;
const int INF=0x3f3f3f3f;

struct node
{
    int l,s,p;
}v[MAXN];

bool cmp(node a, node b)
{
     if(a.l==b.l)
        return a.s > b.s;
    return a.l<b.l;
}

int vis[MAXN];
int dp[MAXN];

///f[i]=min(f[j]+1)(A<=(i−j)/2<=B)

int main()
{
    int t,n,m,p,k,a,b;
    scanf("%d%d",&n,&m);
    scanf("%d%d",&a,&b);
    for(int i=1;i<=n;i++)//标记不能作为左右端点的坐标
    {
        scanf("%d%d",&p,&k);
        for(int i=p+1;i<=k-1;i++)
            vis[i]=1;
    }
    memset(dp,INF,sizeof(dp));
    dp[0]=0;
    int head=1,tail=0,j=0;
    for(int i=2*a;i<=m;i+=2)
    {

        j=i-2*a;
        while(head<=tail && v[tail].l>=dp[j]&&vis[j]!=1) tail--;//初始化
        v[++tail].l=dp[j],v[tail].s=j;

        if(vis[i]) continue;

        while(head<=tail&&i-v[head].s>2*b) head++;//(i-2b,i-2a)范围内的单调队列
        if(head<=tail)
            dp[i]=v[head].l+1;
    }
    if(dp[m]<=INF)printf("%d\n",dp[m]);
    else printf("-1\n");
}

E. Roma and Poker
题意:
n n n场比赛,给出一个 k k k值,每场比赛的结果用W表示胜,L表示败,D表示平, ? 表示未知,?处可以自定义 胜负平
问是否有一个序列满足以下2个要求,有则输出序列,无则输出NO
设前i场胜 W [ i ] W[i] W[i],负 L [ i ] L[i] L[i]
1、前n-1场中,不能有 ∣ W [ i ] − L [ i ] ∣ &gt; = k |W[i]-L[i]|&gt;=k W[i]L[i]>=k
2、最后一场, ∣ W [ n ] − L [ n ] ∣ = k |W[n]-L[n]|=k W[n]L[n]=k
f [ i ] [ j ] f[i][j] f[i][j]表示前i场 W [ i ] − L [ i ] W[i]-L[i] W[i]L[i]的差为 j j j
题解:DP,按题意模拟所有状态,如果最终状态满足条件,就回溯回去

#include<bits/stdc++.h>
#define mp make_pair
using namespace std;

typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, int> pli;
typedef pair<ll, ll> pll;
typedef long double ld;


const int N=1e7+10;
const int MAXN=2010;
const int INF=0x3f3f3f3f;
const double eps=0.0000001;
const ll mod=1e9+7;
int n,m,k,x,y,t;

const int Z=1005;
char s[MAXN];
int dp[MAXN][MAXN];
int pre[MAXN][MAXN];

int main()
{
    scanf("%d%d %s", &n, &k, s);
    dp[0][Z] = 1;
    for (int i=0;i<n;i++)
        for(int j=-k+1;j<k;j++)
        {
            if (!dp[i][Z+j]) continue;
            if(s[i]=='W'||s[i]=='?')
            {
                dp[i+1][Z+j+1]=1;
                pre[i+1][Z+j+1]=1;
            }
            if(s[i]=='D'||s[i]=='?')
            {
                dp[i+1][Z+j]=1;
                pre[i+1][Z+j]=0;
            }
            if(s[i]=='L'||s[i]=='?')
            {
                dp[i+1][Z+j-1]=1;
                pre[i+1][Z+j-1]=-1;
            }
        }
    if (dp[n][Z+k])
    {
        int ans=n,sum=Z+k;
        while(ans)
        {
            int temp=pre[ans][sum];
            ans--;
            sum-=temp;
            if(temp==1)
            {
                s[ans]='W';
            }
            if(temp==0)
            {
                s[ans]='D';
            }
            if(temp==-1)
            {
                s[ans]='L';
            }

        }
        printf("%s\n",s);
    }
    else if (dp[n][Z-k])
    {
        int ans=n,sum=Z-k;
        while(ans)
        {
            int temp=pre[ans][sum];
            ans--;
            sum-=temp;
            if(temp==1)
            {
                s[ans]='W';
            }
            if(temp==0)
            {
                s[ans]='D';
            }
            if(temp==-1)
            {
                s[ans]='L';
            }

        }
        printf("%s\n",s);
    }
    else
        printf("NO\n");
}

参考1
参考2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值