感知机作为神经网络(深度学习)起源的的算法,由美国学者Frank Rosenblatt于1957年提出。
感知机可以接收多个输入信号,输出一个信号。
X1,X2是输入信号,W1和W2是权重,y是输出信号。o被称为神经元。输入信号被送往神经元时,被分别乘以固定的权重,神经元计算传送过来的信号的总和,当总和超过阈值,才会输出1,这也称为神经元被激活。
权重越大,该权重对应的信号越重要。权重相当于电流中的电阻。电阻越小,通过的电流越大;感知机权重越大,通过的信号越大。在控制信号流动难度的上二者发挥着类似的作用。
感知机可以轻松的实现与门、与非门、或门三种逻辑电路。但是无法实现异或门。
感知机是什么
最新推荐文章于 2024-09-11 21:20:23 发布