趣味问题:颠倒的密码

本文探讨了一个有趣的数学问题:四位数密码颠倒后变为原密码的4倍。通过分析得出,原密码首位必须为2,末位为8。接着介绍了两种算法实现,包括穷举法和优化后的算法,最终找到特定解2178,并讨论了N位数密码的扩展情况及其优化算法的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:
奇人小张从来不记自家楼下开门的密码,每次都叫小区保安帮忙解锁,某日,保安不干了,说到:“密码改了,还是四位,恰为原密码颠倒过来,且恰为原密码的4倍。‘就凭这么一点信息,能算出唯一确定的新密码吗?

分析:

  • 假设原密码为ABCD,颠倒后即为DBCA且DBCA=4*ABCD。
  • 1000《ABCD《10000。且1000=<DBCA=4*ABCD<=10000
  • 所以A只能是1或2,又A为1时,DBCA是奇数,不可能满足4倍的关系。所以A=2
  • 则D=8或9,D=9不满足4倍关系,则D=8
  • 则只需要求出B和C两个值就可以。

算法实现的关键

  • 要将四位数ABCD拆开成单个的数字A,B,C,D再组装成新的四位数DBCA。
SeperateNumber(long N)
{
int n,s[30],i = 0; //n = ABCD;
do{s[i++] = N%10;N=N/10}while(N);
return (n = s[0]*1000+s[1]*100+s[2]*10+s[3]) 
}
  • 满足等式关系4*ABCD=DBCA
    算法1:穷举法:由数N的范围为100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值