零均值归一化互相关(Zero Mean Normalized Cross-Correlation)

ZNCC是一种衡量两个图像差异的方法,尤其适用于监控摄像头产生的图像分析。当图像可能存在微小变化时,如由传感器差异、光线变化等因素引起,ZNCC通过计算归一化后的交叉相关性来忽略这些无关紧要的差异。该方法关注图像块而非整个图像,适应不同尺寸的图像部分,并考虑了平均灰度值和标准差来提高比较的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零均值归一化互相关( ZNCC) 是比较两个灰度图像时得到的差异的度量。

假设在固定位置有一个固定的监控摄像头,它一直在拍照,但大多数时候房间是空的,所以相当多的图像是没有意义的,他们只会浪费空间。所以忽略这些多余的图像是好的选择。但这些图像并不相同!即使场景不发生改变,传感器也会产生略有不同的结果。人类不会注意到它们,但是不能简单地一点一点地比较图像。即使你愿意这样去做,图像也会有所不同,因为太阳移动了(阴影也移动了),或者图像中有一个时刻在变化的时钟。

现在您可以使用各种技术解决这个问题。

我想以总结性的方式描述这个技术。由于其他场景中的图像可能有不同的尺寸,你可能不想比较整个图像,因此我假设你有两个尺寸图像的一部分,即图像块,这个图像块的大小均为(2n+1)×(2n+1)。 第一个图像块的中心的像素的坐标为(u1,v1),第二个图像块的中心像素的坐标为(u2,v2)。

平均灰度值:

标准偏差:

 ZNCC被定义为:

 

相关链接:Zero Mean Normalized Cross-Correlation · Martin Thoma

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Antony_Lu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值