*算法训练(leetcode)第三十五天 | 121. 买卖股票的最佳时机、122. 买卖股票的最佳时机 II、123. 买卖股票的最佳时机 III

*121. 买卖股票的最佳时机

leetcode题目地址

贪心

找左侧最小值、右侧最大值(与最小值求差最大),求差即为最大利润。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

// c++
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        int low=prices[0];
        for(int i=0; i<prices.size(); i++){
            low = min(low, prices[i]);
            result = max(result, prices[i]-low);
        }
        return result;
    }
};

*动态规划

思路

// c++
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(2, vector<int>(2, 0));
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i=1; i<prices.size(); i++){
            dp[i%2][0] = max(dp[(i-1)%2][0], -prices[i]);
            dp[i%2][1] = max(dp[(i-1)%2][1], prices[i]+dp[(i-1)%2][0]);
        }
        int len = prices.size();
        return dp[(len-1)%2][1];
    }
};

122. 买卖股票的最佳时机 II

leetcode题目地址

贪心

遍历价格列表,取记录最低价和当前价格比较取最小的赋值为新的最低价。

若当前价格卖出可以盈利则在当天卖出,同时再在当天买入,继续向后找最低价格。

tips: 题目提到可以在同一天进行买入和卖出,因此可以在当天卖出后再买入。

思路

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

// c++
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low = INT_MAX;
        int res = 0;
        for(int i=0; i<prices.size(); i++){
            low = min(low, prices[i]);
            if(prices[i]-low>0){
                res += prices[i]-low;
                low = prices[i];
            }

        }
        return res;
    }
};

*动态规划

和上题思路类似,上一题只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

本题可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

第i天持有股票即dp[i][0],如果是第i天买入股票,所得现金就是昨天不持有股票的所得现金 减去 今天的股票价格 即:dp[i - 1][1] - prices[i]。

// c++
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(2, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for(int i=1; i<prices.size(); i++){
            dp[i%2][0] = max(dp[(i-1)%2][0], dp[(i-1)%2][1]-prices[i]);
            dp[i%2][1] = max(dp[(i-1)%2][1], dp[(i-1)%2][0]+prices[i]);
        }
        int len = prices.size();
        return max(dp[(len-1)%2][0], dp[(len-1)%2][1]);
    }
};

*123. 买卖股票的最佳时机 III

leetcode题目地址

一共四种状态,第一次买入/持有、第一次卖出/不持有、第二次买入/持有、第二次卖出/不持有。

分配四列来记录这四种状态,dp[i][j]是指在第i天的第j个状态时的最大利润。

思路

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

// c++
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        // 不操作
        dp[0][0] = 0;
        // 第一次买入/持有
        dp[0][1] = -prices[0];
        // 第一次卖出/不持有
        dp[0][2] = 0;
        // 第二次买入/持有
        dp[0][3] = -prices[0];
        // 第二次卖出/不持有
        dp[0][4] = 0;

        for(int i=1; i<prices.size(); i++){
            // dp[i][0] = 0;
            dp[i][1] = max(dp[i-1][0]-prices[i], dp[i-1][1]);
            dp[i][2] = max(dp[i-1][1]+prices[i], dp[i-1][2]);
            dp[i][3] = max(dp[i-1][2]-prices[i], dp[i-1][3]);
            dp[i][4] = max(dp[i-1][3]+prices[i], dp[i-1][4]);
        }
        int len=prices.size()-1;
       
        return dp[len][4];

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值