NOIP 2002 过河卒(DP递推)

本文介绍了如何解决NOIP中一个名为'过河卒'的问题,该问题涉及一个棋盘上的卒从点A走到点B,同时需要避开马的控制点。卒只能向下或向右移动,而马的位置固定。通过动态规划的方法,计算卒到达B点的路径数量,考虑到数据范围小,可以直接计算整个棋盘。文章提供了输入输出格式、样例以及动态规划的策略和状态转移方程。
摘要由CSDN通过智能技术生成

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A点(0, 0)、BB点(n, m)(n, m为不超过2020的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式:

 

一行四个数据,分别表示B点坐标和马的坐标。

 

输出格式:

 

一个数据,表示所有的路径条数。

 

输入输出样例

输入样例#1: 复制

6 6 3 3

输出样例#1: 复制

6

说明

结果可能很大!

策略:使用动态规划把整张图的步数全部打出(数据范围很小,这是可行的)。

  1. 为了防止数组越界等一系列不必要的麻烦,在这里把(1,1)当作初始位置,也就是说全体坐标自增1.
  2. 把马自身所在的位置和其能达到的八个位置全部标记,这些路都不通。
  3. 由于我们是要统计路径数,所以它的起始点天然具有一条长度为0的路径,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值