棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点(0, 0)、BB点(n, m)(n, m为不超过2020的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入输出格式
输入格式:
一行四个数据,分别表示B点坐标和马的坐标。
输出格式:
一个数据,表示所有的路径条数。
输入输出样例
输入样例#1: 复制
6 6 3 3
输出样例#1: 复制
6
说明
结果可能很大!
策略:使用动态规划把整张图的步数全部打出(数据范围很小,这是可行的)。
- 为了防止数组越界等一系列不必要的麻烦,在这里把(1,1)当作初始位置,也就是说全体坐标自增1.
- 把马自身所在的位置和其能达到的八个位置全部标记,这些路都不通。
- 由于我们是要统计路径数,所以它的起始点天然具有一条长度为0的路径,