推荐算法
文章平均质量分 64
从入门到退学
回一幻
推荐算法、数据挖掘、数据分析。想到啥写啥
争取尽量抽时间每周发三篇原创(意思就是懒得写或者没得写)。
展开
-
推荐系统评价指标
均方根误差(RMSE)、平均绝对误差(MAE)、Top-N推荐、F-Measure、召回率(Recall)、准确率(Precision)原创 2022-04-14 10:22:35 · 2245 阅读 · 8 评论 -
皮尔逊相关系数python实现
皮尔逊相关系数python实现原创 2022-04-02 18:38:23 · 36398 阅读 · 5 评论 -
推荐算法——矩阵分解
矩阵分解;SVD;ALS;SGD原创 2022-04-01 20:39:07 · 9406 阅读 · 7 评论 -
基于协同过滤(用户和项目)的推荐代码python实现
基于协同过滤(用户和项目)的推荐代码python实现原创 2022-03-26 19:40:48 · 4633 阅读 · 3 评论 -
基于协同过滤的推荐算法
协同过滤推荐算法原创 2022-03-23 10:54:26 · 5536 阅读 · 4 评论 -
相似度计算(4)——Jaccard系数和简单匹配系数
Jaccard系数和简单匹配系数原创 2022-03-21 11:47:32 · 21138 阅读 · 6 评论 -
相似度计算(3)——欧式距离和闵克夫斯基距离
城市街区(曼哈顿、L1范数)距离;欧氏距离;上确界 (切比雪夫,Lmax 范数, L∞范数) 距离。原创 2022-03-19 13:36:17 · 6801 阅读 · 8 评论 -
相似度计算(2)——皮尔逊相关系数
皮尔逊相关系数一、定义 皮尔逊相关系数( Pearson correlation coefficient,PC),又称皮尔逊积矩相关系数(Pearson product-moment correlation coefficient,PPMCC或PCCs),是用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间。相关系数的绝对值越大,相关度越强,相关系数的绝对值越小,相关度越弱。二、公式公式一:两个变量之间的皮尔逊相关系数定义为两个变量之间的协方差和标准差的商,公式一定义了总体相关系数原创 2022-03-18 20:51:17 · 12860 阅读 · 3 评论 -
相似度计算(1)——余弦相似度
余弦相似度 余弦相似度:用向量空间中两向量夹角的余弦值作为衡量两个个体之间差异的大小。余弦值越接近1,表明两个向量的夹角越接近0度,则两个向量越相似。余弦值越接近0,表明两个向量的夹角越接近180度,则两个向量越不相似。 如存在向量a=(x1,y1)和向量b=(x2,y2),由几何定义计算内积a·b=|a||b|cosθ,可知: 则根据二维向量引向多维向量A(x1,y1,z1…)和B(x2,y2,z2…),其中Ai和Bi为向量中的各个分量。可得: 简单举例:根据一下三个用户对不同物品的偏原创 2022-03-16 17:33:43 · 14058 阅读 · 4 评论 -
基于内容的推荐算法
基于内容的推荐算法原创 2022-03-16 10:50:26 · 5955 阅读 · 0 评论 -
基于人口统计学的推荐算法
简单了解基于人口统计学的推荐算法原创 2022-03-15 15:55:39 · 2672 阅读 · 1 评论