今天还是二叉树,与前几天相比,今天逐渐有点理解前序和后序遍历的区别与使用场景了
110. Balanced Binary Tree
这就是一道典型的后序遍历的题,需要分别得到左右子树的结果并判断之后来确定最后的return值
Way1:
基本思路就是对于每个节点,得到其左右子树的高度,然后进行判断,如果满足要求则返回自己的最大高度
class Solution:
def isBalanced(self, root: Optional[TreeNode]) -> bool:
def getheight(node):
if not node:
return 0
l=getheight(node.left)
r=getheight(node.right)
if l==-1 or r==-1:
return -1
if abs(l-r) >1:
return -1
return max(l,r)+1
if getheight(root) ==-1:
return False
return True
257. Binary Tree Paths
这道题主要就是一个回溯,用dfs或者bfs都可以
Way1:
用recursion,需要回溯。recursion过程中先把当前的node值加到path里面,然后最左右子树的不同情况做判断
class Solution(object):
def binaryTreePaths(self, root):
"""
:type root: TreeNode
:rtype: List[str]
"""
result=[]
def find(path,node):
path=path+"->"+str(node.val)
if node.left ==None and node.right==None:
result.append(path[2:])
elif node.left ==None:
find(path,node.right)
elif node.right==None:
find(path,node.left)
else:
find(path,node.left)
find(path,node.right)
find("",root)
return result
Way2:
用bfs, 基本判断思路和way1是一致的
class Solution:
def binaryTreePaths(self, root: Optional[TreeNode]) -> List[str]:
q=deque()
path_st=deque()
res=[]
if not root:
return res
q.append(root)
path_st.append(str(root.val))
while q:
path=path_st.popleft()
node=q.popleft()
if not node.left and not node.right:
res.append(path)
if node.left:
path_st.append(path+"->"+str(node.left.val))
q.append(node.left)
if node.right:
path_st.append(path+"->"+str(node.right.val))
q.append(node.right)
return res
404. Sum of Left Leaves
这道题的难点在于理解leave node。叶子节点既没有左子树也没有右子树。
Way1:
遍历所有的node,中途判断当前node的左node是不是leave node
class Solution:
def sumOfLeftLeaves(self, root: Optional[TreeNode]) -> int:
def recur(node):
if not node:
return 0
l=recur(node.left)
if node.left and not node.left.left and not node.left.right:
l=node.left.val
r=recur(node.right)
return l+r
return recur(root)