今天的题逻辑性比较强,需要仔细地思考才能进行整体的化简
513. Find Bottom Left Tree Value
这道题其实dfs和bfs都可以用,但是明显bfs更加的简单,因为是找最左下的元素即最后一层的最左边的元素
Way1:
用bfs遍历,每层的第一个元素都存下来,并且最后一次的元素为最终值
class Solution:
def findBottomLeftValue(self, root: Optional[TreeNode]) -> int:
q=deque()
res=0
q.append(root)
while q:
for i in range(len(q)):
node=q.popleft()
if i==0:
res=node.val
if node.left:
q.append(node.left)
if node.right:
q.append(node.right)
return res
112. Path Sum
这道题相对来说简单一些,因为只需要判断是不是存在这样的path,并没说要把所有的path都输出戳来,所以只要做dfs(前中后序都可)就行
Way1:
传递的值有两个.一个是当前的remianing=sum-node.val,还有一个就是node的子节点
class Solution:
def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:
def dfs(node,remain):
if not node:
return
if not node.left and not node.right:
if remain==node.val:
return True
else:
return False
return dfs(node.left,remain-node.val) or dfs(node.right,remain-node.val)
return dfs(root,targetSum)
113. Path Sum II
这道题相对于上面那道题相比需要进行traceback,并且要注意的是尽量不要把list作为一个参数进行传递,会很难控制
Way1:
传递的参数和上一题是一样的,多的步骤就是再判断是否有左右子树的时候进行遍历,且遍历后要还原remaining的值
class Solution:
def pathSum(self, root: Optional[TreeNode], targetSum: int) -> List[List[int]]:
res=[]
if not root:
return []
def dfs(node,remain):
if not node.left and not node.right:
if remain==0:
res.append(tmp[:])
return
if node.left:
tmp.append(node.left.val)
dfs(node.left,remain-node.left.val)
tmp.pop()
if node.right:
tmp.append(node.right.val)
dfs(node.right,remain-node.right.val)
tmp.pop()
tmp=[]
tmp.append(root.val)
dfs(root,targetSum-root.val)
return res
105. Construct Binary Tree from Preorder and Inorder Traversal
这道题相对逻辑要复杂一些,要搞清楚如果对preorder和inorder进行切割
Way1:
直接调用当前的函数进行分割,不断的把preorder的第一个元素pop出来
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]:
if inorder:
INDEX=inorder.index(preorder.pop(0))
root=TreeNode(inorder[INDEX])
root.left=self.buildTree(preorder,inorder[:INDEX])
root.right=self.buildTree(preorder,inorder[INDEX+1:])
return root
106. Construct Binary Tree from Inorder and Postorder Traversal
这道题思路上和上一题是一样的
Way1:
重建postorder和inder, inorder通过当前新建的node值找到对应的index划分左右子树.postorder通过inorder划分的左右子树的长度划分新的postorder,然后用递归建立node的左右子树
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
if not postorder:
return
root_val = postorder[-1]
root = TreeNode(root_val)
root_index = inorder.index(root_val)
left_inorder = inorder[:root_index]
right_inorder = inorder[root_index + 1:]
left_postorder = postorder[:len(left_inorder)]
right_postorder = postorder[len(left_inorder): len(postorder) - 1]
root.left = self.buildTree(left_inorder, left_postorder)
root.right = self.buildTree(right_inorder, right_postorder)
return root
Way2:
这种方法更加巧妙. 需要想清楚的就是postorder是从后往前找的,所以子树的建立要先递归右再左
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> Optional[TreeNode]:
if inorder:
INDEX=inorder.index(postorder.pop())
node=TreeNode(inorder[INDEX])
node.right=self.buildTree(inorder[INDEX+1:],postorder)
node.left=self.buildTree(inorder[:INDEX],postorder)
return node