0均值标准化(Z-Score Standardization)

定义

将原始数据集归一化为均值为0、方差为1的数据集。归一化的公式如下:
z = x − μ σ z=\frac{x-\mu}{\sigma} z=σxμ

其中, μ \mu μ σ \sigma σ分别为原始数据集的均值和方差。这种归一化方式要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕。

使用场合

在分类、聚类算法中,需要使用距离来度量相似性的时候,该方法适用。

### 对一维信号数据执行 Z-Score 标准化 对于一维信号数据,Z-Score 标准化是一种常见的预处理技术。该方法可以将原始数据转换成均值为零、标准差为一的标准正态分布形式[^1]。 具体来说,在 PCL 应用场景下,如果使用未标准化的一维信号数据可能导致后续处理中的异常情况。为了提高数据的可比性和稳定性,建议采用 Z-Score 方法对其进行标准化处理。 #### Python 实现示例 下面是一个简单的Python代码片段来展示如何对一维数组应用 Z-Score 标准化: ```python import numpy as np from sklearn.preprocessing import StandardScaler # 创建一个模拟的一维信号数据集 signal_data = np.random.randn(10) print("Original Signal Data:", signal_data) # 使用StandardScaler对象进行Z-Score标准化 scaler = StandardScaler() standardized_signal = scaler.fit_transform(signal_data.reshape(-1, 1)).flatten() print("Standardized Signal Data:", standardized_signal) ``` 上述代码中 `reshape(-1, 1)` 的作用是将原本形状为 `(n,)` 的一维向量重塑为二维矩阵 `(n, 1)` 形式以便于 `fit_transform()` 函数调用;最后再通过 `.flatten()` 将其恢复回原来的一维结构[^2]。 另外一种手动计算的方式也可以达到相同的效果: ```python mean_value = signal_data.mean() std_deviation = signal_data.std(ddof=0) manual_standardization = (signal_data - mean_value) / std_deviation print("Manually Standardized Signal Data:", manual_standardization) ``` 这里需要注意的是当手动实现时,默认情况下 NumPy 计算样本标准偏差会除以 N-1 而不是 N(即 Bessel's correction),这与 scikit-learn 中使用的总体标准差定义略有差异。因此在实际操作过程中可以根据需求调整参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值