Supre_yuan
码龄6年
关注
提问 私信
  • 博客:77,802
    77,802
    总访问量
  • 56
    原创
  • 2,165,971
    排名
  • 27
    粉丝
  • 0
    铁粉

个人简介:广告位招租

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-11-30
博客简介:

Supre_yuan的博客

博客描述:
广告位招租
查看详细资料
个人成就
  • 获得51次点赞
  • 内容获得6次评论
  • 获得304次收藏
  • 代码片获得276次分享
创作历程
  • 1篇
    2022年
  • 61篇
    2021年
成就勋章
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Pink Noise

定义粉色噪声是一个具有一种频谱(这种频谱使得功率谱密度与信号的频率成反比)的信号或过程。在粉红噪声中,每个八度音程(每个频率减半或加倍)携带等量的噪声能量。粉红噪声是生物系统中最常见的信号之一。该名称源于具有该功率谱的可见光的粉红色外观。这与每个频率间隔具有相同强度的白噪声形成对比。描述人类的听觉系统不会以相同的灵敏度感知不同的频率。比如,对于给定的强度,大约1-4kHz的信号听起来最响亮。音频工程师将粉红噪声通过一个系统来测试它在感兴趣的频谱中是否具有平坦的频率响应。因为粉红噪声倾向
翻译
发布博客 2022.01.21 ·
2634 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

AWash: Handwashing Assistance for the Elderly with Dementia via Wearables

Awash: 通过可穿戴设备为老年痴呆症患者提供洗手帮助摘要:本文提出一种系统Awash,仅利用安装在大多数手腕佩戴设备(如智能手表)上的商用IMU传感器来表征手部运动并提供相应的帮助,以确保患有痴呆症的老年人遵守手部卫生。针对老年痴呆症患者对IMU传感器读数的特殊干扰,本文设计了一系列有效的技术来分割洗手动作,将感觉输入转换到身体坐标系,并提取传感器-身体倾斜角。采用混合神经网络模型,使Awash在不需要重新训练或调整的情况下推广到新用户,避免了收集每个用户的行为信息的麻烦。为了满足具有不同执
原创
发布博客 2021.12.13 ·
1392 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Do You Hear What I Hear? Fingerprinting Smart Devices Through Embedded Acoustic Components

摘要本文研究了使用嵌入在智能手机中的麦克风和扬声器来对单个设备进行唯一指纹识别的可行性。在制造过程中,设备麦克风和扬声器中会出现细微的缺陷,导致产生和接收的声音出现异常。本文利用这一观察结果通过播放和录制音频样本来对智能手机进行指纹识别。介绍距观察,即使移动设备上的软件得到加强,麦克风和扬声器中的硬件级别特性也可以用来识别物理设备的指纹。在制造过程中,这些组件的模拟电路中会引入缺陷,因此,两个麦克风和扬声器永远不会一样。通过一项观察研究,我们发现这些缺陷足够严重和普遍,以至于我们可以通过被动录
原创
发布博客 2021.12.10 ·
2158 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CanalScan: Tongue-Jaw Movement Recognition via Ear Canal Deformation Sensing

声道扫描:基于耳道变形传感的舌颚运动识别摘要基于舌颚运动的人机界面最近已经成为主要技术趋势之一。然而,现有方案有几个限制,例如需要专用硬件,而且通常穿着不舒服。本文介绍了CanalScan,一种仅使用商品扬声器和麦克风安装在无处不在的现成设备(如智能手机)上的非侵入式舌颚运动识别系统。其基本思想是发送一个声音信号,然后捕捉其反射,并得出由舌颚运动引起的耳道变形的独特模式。采用支持向量域描述的动态分割方法对舌颚运动进行分割。为了克服多径反射中的传感器未知敏感缺陷和耳道形状敏感缺陷,我们首先设计算
原创
发布博客 2021.11.02 ·
418 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

基于互信息的基本粒子群优化特征选择

摘要特征选择是模式识别和数据挖掘中的一种重要的数据处理方法。由于没有考虑FS问题本身的特点,大多数粒子群优化(PSO)算法采用的传统粒子更新机制和群体初始化策略限制了他们在处理高维FS问题上的性能。针对这一问题,提出了一种基于互信息的基本粒子群算法(BBPSO)的特征选择算法。首先,一处了一种有效的基于标签关联的群初始化策略,充分利用特征和类标签之间的相关性来加速群的收敛。然后,为了提高算法的开发性能,提出了两种基于特征相关性冗余的局部搜索算子,即补充算子和删除算子。此外,设计了一种自适应翻转变异算子来帮
原创
发布博客 2021.11.02 ·
644 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

家居物联网(IoT)接入控制与认证的再思考

摘要在当前部署的技术不能在具有复杂社会关系的多个用户与单个设备交互的设置中提供可用的访问控制规范或认证。在本文中,我们开始重新构想家用物联网设备的访问控制和认证。我们建议访问控制关注物联网功能(即设备可以执行的某些操作),而不是关注每个设备的粒度。在一项由425名参与者组成的在线用户研究中,我们发现参与者对于单个设备内的不同功能和他们自身能力的匹配很不相同。从这些所需的策略中,我们确定了默认策略的可能候选者。我们还指出了用于更复杂但需要的访问控制策略的必要原语。这些原语的范围从一天的时间范围到用
原创
发布博客 2021.10.31 ·
5409 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

EchoPrint: Two-factor Authentication using Acoustic and Vision on Smartphones

EchoPrint:在智能手机上使用声学和视觉的双因素身份验证评估数据采集在数据收集之前,我们从我们的机构获得了所需的人体受试者培训书。45名不同年龄、性别和肤色的参与者参加了实验。参与者脸部外观的多样性帮助我们捕捉到足够的数据来创建一个强大的特征提取模型。我们还包括5个非人类类别:打印/展示在不同材料的人脸,如纸张、桌面显示器、纸盒上的照片、墙壁和大理石雕塑。在数据收集过程中,每个参与者都被要求将智能手机放在他/她的脸前面,以确保人脸对齐。为了适应手机的轻微移动,参与者被鼓励慢慢移动手机以覆盖不同的
原创
发布博客 2021.10.18 ·
302 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

SonicPrint: A Generally Adoptable and Secure Fingerprint Biometrics in Smart Devices

摘要虽然指纹技术是高影响应用(如智能手机、货币交易和国际边境验证)中的一种生物识别解决方案,但现有的指纹扫描仪很容易受到假手指的欺骗攻击,而且由于硬件限制无法跨智能设备(如可穿戴设备)使用。我们提出SonicPrint将指纹识别扩展到智能手机以外的任何智能设备,而不需要传统的指纹扫描仪。SonicPrint基于用户在智能设备上滑动指尖时产生的指纹感应声波效应(FiSe)以及由此产生的属性,即,不同用户的指纹会导致不同的FiSe。作为第一项探索性研究,31名参与者在5种不同类型的智能设备上进行了4次不
原创
发布博客 2021.10.08 ·
503 阅读 ·
0 点赞 ·
2 评论 ·
2 收藏

信噪比_SNR

概念信噪比,英文名称叫做SNR或S/N(SIGNAL-NOISE RATIO)。是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。计算方法信噪比的计量单位是dB,其计算方法是10lg(Ps/Pn),其中Ps和Pn分别代表信号与噪声的有效功率,也可以换算成电压幅值的比率关系:20Lg(Vs/Vn),Vs和Vn分别代表信号和噪声电压
原创
发布博客 2021.10.07 ·
13067 阅读 ·
11 点赞 ·
1 评论 ·
99 收藏

深度学习_DenseNet

ResNet极大地改变了如何参数化深层网络中函数的观点。稠密连接网络(DenseNet)在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解下。从ResNet到DenseNet回想一下任意函数的泰勒展开式,它把这个函数分解成越来越高阶的项。在xxx接近0时,f(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+…f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\frac{f^{\prim
原创
发布博客 2021.10.06 ·
325 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

深度学习_残差块

让我们聚焦于神经网络的局部:如下图所示,假设我们的原始输入为xxx,而希望学出的理想映射为f(x)f(\mathbf{x})f(x)(作为下图上方激活函数的输入)。下图左图虚线框中的部分需要直接拟合出该映射f(x)f(\mathbf{x})f(x),而右图虚线框中的部分则需要拟合出残差映射f(x)−xf(\mathbf{x})-\mathbf{x}f(x)−x。残差映射在现实中往往更容易优化。以本节开头提到等恒等映射作为我们希望学出的理想映射f(x)f(\mathbf{x})f(x),我们只需要将下图右图虚
原创
发布博客 2021.10.06 ·
8069 阅读 ·
4 点赞 ·
0 评论 ·
27 收藏

深度学习_批量归一化

训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手。在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度。在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络。训练深层网络为什么要批量归一化层呢?让我们回顾一下训练神经网络时出现的一些实际挑战:数据预处理的方式通常会对最终结果产生巨大影响。回想一下我们应用多层感知机来预测房价的例子。使用真实数据时,我们的第一步是标准化输入特征,使其平均
原创
发布博客 2021.10.06 ·
1016 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

深度学习_块的网络(VGG)

虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。下面,我们将介绍一些常用于设计深层神经网络的启发式概念。与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层次,现在又转向模块,重复各层的模式。使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry Group)(VGG)的VGG网络中。通过使用循环和子程序,可以很容易地在任何现代深
原创
发布博客 2021.10.06 ·
1116 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

深度学习_深度卷积神经网络(AlexNet)

2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年的ImageNet图像识别挑战赛。AlexNet和LeNet的架构非常相似。这里我们提供了一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。下图展示了从LeNet(左)到AlexNet(right)的架构。AlexNet和LeNet的设计理念非常相似,但也有如下区别:AlexNet
原创
发布博客 2021.10.06 ·
908 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

深度学习_卷积神经网络(LeNet)

在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一。这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字。当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法。LeNet被广泛用于自动取款机中,帮助识别处理支票的数字。LeNet总体来看,LeNet(LeNet-5)由两个部分组成:卷积编码器: 由两个卷积层组成全连接层密集快: 由三个全连接层组成每个卷积块中的基本单元是一个卷积层、一个sigm
原创
发布博客 2021.10.06 ·
427 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

25_深度学习_汇聚层

通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率,聚集信息,这样随着我们在神经网络层叠的上升,每个神经元对其敏感的感受野(输入)就越大。而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层。此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性。例如,如果我们拍摄黑白之
原创
发布博客 2021.10.06 ·
2332 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏

24_深度学习_多输入多输出通道

虽然每个图像具有多个通道和多层卷积层。例如彩色图像具有标准的RGB通道来指示红、绿和蓝。但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子。这使得我们可以将输入、卷积核和输出看作二维张量。当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量。例如,每个RGB输入图像具有3×h×w3\times{h}\times{w}3×h×w的形状。我们将这个大小为3的轴称为通道(channel)维度。在本节中,我们将更深入地研究具有多输入和多输出通道的卷积核。多输入通道当输入包含多个通道时,需要构造一
原创
发布博客 2021.10.06 ·
1054 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

23_深度学习_填充和步幅

上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为2×22\times22×2。从上图可看出卷积的输出形状取决于输入形状和卷积核的形状。填充以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素。解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0)。例如,在上图中我们将3×33\times33×3输入填充到5×55\times55×5,那么它的输出就增加为4×44\times44×4。变换如下图所示:步幅在计算互相关时,.
原创
发布博客 2021.10.05 ·
502 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

22_深度学习_图像卷积

由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例。互相关运算严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算。在卷积层中,输入张量和核张量通过互相关运算产生输出张量。首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示。下图中,输入是高度为3、宽度为3的二维张量(即形状为3×33\times33×3)。卷积核的高度和宽度都是2。注意,输出大小略小于输入大小。这是因为我们需要足够的空间在图像
原创
发布博客 2021.10.05 ·
351 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

21_深度学习_卷积神经网络

这里介绍的卷积神经网络是一类强大的、为处理图像数据而设计的神经网络。基于卷积神经网络结构的模型在计算机视觉领域中已经占主导地位,当今几乎所有的图像识别、对象检测或语义分割相关的问题都是以这种方法为基础。卷积神经网络需要的参数少于全连接结构的网络,而且卷积也很容易用GPU并行计算。卷积神经网络是机器学习利用自然图像中一些已知结构的创造性方法。不变性卷积神经网络将空间不变性这一概念系统化,从而基于这个模型使用较少的参数来学习有用的表示。现在,我们归纳下帮助我们设计适合于计算机视觉的神经网络结构的想法
原创
发布博客 2021.10.05 ·
297 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多