- 博客(62)
- 收藏
- 关注
翻译 Pink Noise
定义粉色噪声是一个具有一种频谱(这种频谱使得功率谱密度与信号的频率成反比)的信号或过程。在粉红噪声中,每个八度音程(每个频率减半或加倍)携带等量的噪声能量。粉红噪声是生物系统中最常见的信号之一。该名称源于具有该功率谱的可见光的粉红色外观。这与每个频率间隔具有相同强度的白噪声形成对比。描述人类的听觉系统不会以相同的灵敏度感知不同的频率。比如,对于给定的强度,大约1-4kHz的信号听起来最响亮。音频工程师将粉红噪声通过一个系统来测试它在感兴趣的频谱中是否具有平坦的频率响应。因为粉红噪声倾向
2022-01-21 22:12:01 2433
原创 AWash: Handwashing Assistance for the Elderly with Dementia via Wearables
Awash: 通过可穿戴设备为老年痴呆症患者提供洗手帮助摘要:本文提出一种系统Awash,仅利用安装在大多数手腕佩戴设备(如智能手表)上的商用IMU传感器来表征手部运动并提供相应的帮助,以确保患有痴呆症的老年人遵守手部卫生。针对老年痴呆症患者对IMU传感器读数的特殊干扰,本文设计了一系列有效的技术来分割洗手动作,将感觉输入转换到身体坐标系,并提取传感器-身体倾斜角。采用混合神经网络模型,使Awash在不需要重新训练或调整的情况下推广到新用户,避免了收集每个用户的行为信息的麻烦。为了满足具有不同执
2021-12-13 11:29:54 1377
原创 Do You Hear What I Hear? Fingerprinting Smart Devices Through Embedded Acoustic Components
摘要本文研究了使用嵌入在智能手机中的麦克风和扬声器来对单个设备进行唯一指纹识别的可行性。在制造过程中,设备麦克风和扬声器中会出现细微的缺陷,导致产生和接收的声音出现异常。本文利用这一观察结果通过播放和录制音频样本来对智能手机进行指纹识别。介绍距观察,即使移动设备上的软件得到加强,麦克风和扬声器中的硬件级别特性也可以用来识别物理设备的指纹。在制造过程中,这些组件的模拟电路中会引入缺陷,因此,两个麦克风和扬声器永远不会一样。通过一项观察研究,我们发现这些缺陷足够严重和普遍,以至于我们可以通过被动录
2021-12-10 22:23:38 2144
原创 CanalScan: Tongue-Jaw Movement Recognition via Ear Canal Deformation Sensing
声道扫描:基于耳道变形传感的舌颚运动识别摘要基于舌颚运动的人机界面最近已经成为主要技术趋势之一。然而,现有方案有几个限制,例如需要专用硬件,而且通常穿着不舒服。本文介绍了CanalScan,一种仅使用商品扬声器和麦克风安装在无处不在的现成设备(如智能手机)上的非侵入式舌颚运动识别系统。其基本思想是发送一个声音信号,然后捕捉其反射,并得出由舌颚运动引起的耳道变形的独特模式。采用支持向量域描述的动态分割方法对舌颚运动进行分割。为了克服多径反射中的传感器未知敏感缺陷和耳道形状敏感缺陷,我们首先设计算
2021-11-02 22:50:20 402 1
原创 基于互信息的基本粒子群优化特征选择
摘要特征选择是模式识别和数据挖掘中的一种重要的数据处理方法。由于没有考虑FS问题本身的特点,大多数粒子群优化(PSO)算法采用的传统粒子更新机制和群体初始化策略限制了他们在处理高维FS问题上的性能。针对这一问题,提出了一种基于互信息的基本粒子群算法(BBPSO)的特征选择算法。首先,一处了一种有效的基于标签关联的群初始化策略,充分利用特征和类标签之间的相关性来加速群的收敛。然后,为了提高算法的开发性能,提出了两种基于特征相关性冗余的局部搜索算子,即补充算子和删除算子。此外,设计了一种自适应翻转变异算子来帮
2021-11-02 11:45:06 629
原创 家居物联网(IoT)接入控制与认证的再思考
摘要在当前部署的技术不能在具有复杂社会关系的多个用户与单个设备交互的设置中提供可用的访问控制规范或认证。在本文中,我们开始重新构想家用物联网设备的访问控制和认证。我们建议访问控制关注物联网功能(即设备可以执行的某些操作),而不是关注每个设备的粒度。在一项由425名参与者组成的在线用户研究中,我们发现参与者对于单个设备内的不同功能和他们自身能力的匹配很不相同。从这些所需的策略中,我们确定了默认策略的可能候选者。我们还指出了用于更复杂但需要的访问控制策略的必要原语。这些原语的范围从一天的时间范围到用
2021-10-31 11:52:16 5365
原创 EchoPrint: Two-factor Authentication using Acoustic and Vision on Smartphones
EchoPrint:在智能手机上使用声学和视觉的双因素身份验证评估数据采集在数据收集之前,我们从我们的机构获得了所需的人体受试者培训书。45名不同年龄、性别和肤色的参与者参加了实验。参与者脸部外观的多样性帮助我们捕捉到足够的数据来创建一个强大的特征提取模型。我们还包括5个非人类类别:打印/展示在不同材料的人脸,如纸张、桌面显示器、纸盒上的照片、墙壁和大理石雕塑。在数据收集过程中,每个参与者都被要求将智能手机放在他/她的脸前面,以确保人脸对齐。为了适应手机的轻微移动,参与者被鼓励慢慢移动手机以覆盖不同的
2021-10-18 23:32:05 294 1
原创 SonicPrint: A Generally Adoptable and Secure Fingerprint Biometrics in Smart Devices
摘要虽然指纹技术是高影响应用(如智能手机、货币交易和国际边境验证)中的一种生物识别解决方案,但现有的指纹扫描仪很容易受到假手指的欺骗攻击,而且由于硬件限制无法跨智能设备(如可穿戴设备)使用。我们提出SonicPrint将指纹识别扩展到智能手机以外的任何智能设备,而不需要传统的指纹扫描仪。SonicPrint基于用户在智能设备上滑动指尖时产生的指纹感应声波效应(FiSe)以及由此产生的属性,即,不同用户的指纹会导致不同的FiSe。作为第一项探索性研究,31名参与者在5种不同类型的智能设备上进行了4次不
2021-10-08 11:37:23 495 2
原创 信噪比_SNR
概念信噪比,英文名称叫做SNR或S/N(SIGNAL-NOISE RATIO)。是指一个电子设备或者电子系统中信号与噪声的比例。这里面的信号指的是来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种信号并不随原信号的变化而变化。计算方法信噪比的计量单位是dB,其计算方法是10lg(Ps/Pn),其中Ps和Pn分别代表信号与噪声的有效功率,也可以换算成电压幅值的比率关系:20Lg(Vs/Vn),Vs和Vn分别代表信号和噪声电压
2021-10-07 19:50:32 12808 1
原创 深度学习_DenseNet
ResNet极大地改变了如何参数化深层网络中函数的观点。稠密连接网络(DenseNet)在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解下。从ResNet到DenseNet回想一下任意函数的泰勒展开式,它把这个函数分解成越来越高阶的项。在xxx接近0时,f(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+…f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\frac{f^{\prim
2021-10-06 21:31:45 319
原创 深度学习_残差块
让我们聚焦于神经网络的局部:如下图所示,假设我们的原始输入为xxx,而希望学出的理想映射为f(x)f(\mathbf{x})f(x)(作为下图上方激活函数的输入)。下图左图虚线框中的部分需要直接拟合出该映射f(x)f(\mathbf{x})f(x),而右图虚线框中的部分则需要拟合出残差映射f(x)−xf(\mathbf{x})-\mathbf{x}f(x)−x。残差映射在现实中往往更容易优化。以本节开头提到等恒等映射作为我们希望学出的理想映射f(x)f(\mathbf{x})f(x),我们只需要将下图右图虚
2021-10-06 20:48:14 8014
原创 深度学习_批量归一化
训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手。在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度。在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络。训练深层网络为什么要批量归一化层呢?让我们回顾一下训练神经网络时出现的一些实际挑战:数据预处理的方式通常会对最终结果产生巨大影响。回想一下我们应用多层感知机来预测房价的例子。使用真实数据时,我们的第一步是标准化输入特征,使其平均
2021-10-06 17:46:28 1006
原创 深度学习_块的网络(VGG)
虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。下面,我们将介绍一些常用于设计深层神经网络的启发式概念。与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络结构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层次,现在又转向模块,重复各层的模式。使用块的想法首先出现在牛津大学的视觉几何组(visualgeometry Group)(VGG)的VGG网络中。通过使用循环和子程序,可以很容易地在任何现代深
2021-10-06 17:09:24 1109
原创 深度学习_深度卷积神经网络(AlexNet)
2012年,AlexNet横空出世。它首次证明了学习到的特征可以超越手工设计的特征。它一举打破了计算机视觉研究的现状。AlexNet使用了8层卷积神经网络,并以很大的优势赢得了2012年的ImageNet图像识别挑战赛。AlexNet和LeNet的架构非常相似。这里我们提供了一个稍微精简版本的AlexNet,去除了当年需要两个小型GPU同时运算的设计特点。下图展示了从LeNet(左)到AlexNet(right)的架构。AlexNet和LeNet的设计理念非常相似,但也有如下区别:AlexNet
2021-10-06 16:39:27 897
原创 深度学习_卷积神经网络(LeNet)
在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一。这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字。当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法。LeNet被广泛用于自动取款机中,帮助识别处理支票的数字。LeNet总体来看,LeNet(LeNet-5)由两个部分组成:卷积编码器: 由两个卷积层组成全连接层密集快: 由三个全连接层组成每个卷积块中的基本单元是一个卷积层、一个sigm
2021-10-06 15:31:51 420
原创 25_深度学习_汇聚层
通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率,聚集信息,这样随着我们在神经网络层叠的上升,每个神经元对其敏感的感受野(输入)就越大。而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层。此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性。例如,如果我们拍摄黑白之
2021-10-06 15:31:43 2283 1
原创 24_深度学习_多输入多输出通道
虽然每个图像具有多个通道和多层卷积层。例如彩色图像具有标准的RGB通道来指示红、绿和蓝。但是到目前为止,我们仅展示了单个输入和单个输出通道的简化例子。这使得我们可以将输入、卷积核和输出看作二维张量。当我们添加通道时,我们的输入和隐藏的表示都变成了三维张量。例如,每个RGB输入图像具有3×h×w3\times{h}\times{w}3×h×w的形状。我们将这个大小为3的轴称为通道(channel)维度。在本节中,我们将更深入地研究具有多输入和多输出通道的卷积核。多输入通道当输入包含多个通道时,需要构造一
2021-10-06 15:31:31 1048
原创 23_深度学习_填充和步幅
上图中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维度为2×22\times22×2。从上图可看出卷积的输出形状取决于输入形状和卷积核的形状。填充以上面的图为例,在应用多层卷积时,我们常常丢失边缘像素。解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0)。例如,在上图中我们将3×33\times33×3输入填充到5×55\times55×5,那么它的输出就增加为4×44\times44×4。变换如下图所示:步幅在计算互相关时,.
2021-10-05 20:13:14 496
原创 22_深度学习_图像卷积
由于卷积神经网络的设计是用于探索图像数据,本节我们将以图像为例。互相关运算严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),而不是卷积运算。在卷积层中,输入张量和核张量通过互相关运算产生输出张量。首先,我们暂时忽略通道(第三维)这一情况,看看如何处理二维图像数据和隐藏表示。下图中,输入是高度为3、宽度为3的二维张量(即形状为3×33\times33×3)。卷积核的高度和宽度都是2。注意,输出大小略小于输入大小。这是因为我们需要足够的空间在图像
2021-10-05 20:01:50 343
原创 21_深度学习_卷积神经网络
这里介绍的卷积神经网络是一类强大的、为处理图像数据而设计的神经网络。基于卷积神经网络结构的模型在计算机视觉领域中已经占主导地位,当今几乎所有的图像识别、对象检测或语义分割相关的问题都是以这种方法为基础。卷积神经网络需要的参数少于全连接结构的网络,而且卷积也很容易用GPU并行计算。卷积神经网络是机器学习利用自然图像中一些已知结构的创造性方法。不变性卷积神经网络将空间不变性这一概念系统化,从而基于这个模型使用较少的参数来学习有用的表示。现在,我们归纳下帮助我们设计适合于计算机视觉的神经网络结构的想法
2021-10-05 19:26:30 289
原创 20_深度学习_Dropout
扰动的鲁棒性在之前我们讨论权重衰减(L2L_{2}L2正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量。简单性的另一个有用角度是平滑性,即函数不应该对其输入的微笑变化敏感。例如,当我们对图像进行分类时,我们预计向像素添加一些随机噪声应该是基本无影响的。dropout在正向传播过程中,计算每一内部层同时注入噪声,这已经成为训练神经网络的标准技术。这种方法之所以被称为dropout,因为我们从表面上看是在训练过程中丢弃(drop out)一些神经元。在整个训练过程的每一次迭代中,dropout
2021-10-05 17:09:27 239
原创 19_深度学习_权重衰减
假设我们已经拥有尽可能多的高质量数据,现在我们将重点放在正则化技术上。范数与权重衰减在训练参数化机器学习模型时,权重衰减(通常称为L2L_{2}L2正则化)是最广泛使用的正则化的技术之一。这项技术是基于一个基本直觉,即在所有函数fff中,函数f=0f=0f=0(所有输入都得到值0)在某种意义上是最简单的,我们可以通过函数与零的距离来衡量函数的复杂度。但是我们应该如何精确地测量一个函数和零之间的距离呢?这里还没有一个确切的答案。一种简单的方法是用过线性函数f(x)=w⊤xf(\mathbf{x})=
2021-10-05 16:36:51 297
原创 18_深度学习_模型选择、欠拟合和过拟合
如何发现可以泛化的模式是机器学习的根本问题。将模型在训练数据上过拟合得比潜在分布中更接近的现象称为过拟合,用于对抗过拟合的技术称为正则化。训练误差和泛化误差训练误差是指,我们的模型在训练数据集上计算得到的误差。泛化误差是指,我们将模型应用在同样从原始样本的分布中抽取的无限多的数据样本时,我们模型误差的期望。在实际中,我们只能通过将模型应用于一个独立的测试集来估计泛化误差,该测试集由随机选取的、未曾在训练集中出现的数据样本构成。模型复杂性在本节中将重点介绍几个倾向于影响模型泛化的因素:可调整
2021-10-05 16:20:10 555
原创 17_深度学习_多层感知机的简洁实现
我们可以通过高级API更简洁地实现多层感知机。import torchfrom torch import nnfrom d2l import torch as d2l模型与softmax回归的简洁实现相比,唯一的区别是我们添加了2个全连接层。第一层是隐藏层,它包含256个隐藏单元,并使用了ReLU激活函数。第二层是输出层。net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Lin
2021-10-05 15:36:01 236
原创 16_深度学习_多层感知机的从零开始实现
我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机。为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集。import torchfrom torch import nnfrom d2l import torch as d2lbatch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)初始化模型参数Fashion-M
2021-10-05 15:21:23 247
原创 15_深度学习_多层感知机
最简单的深度网络称为多层感知机,它们由多层神经元组成,每一层都与下面一层(从中接收输入)和上面一层(反过来影响当前层的神经元)完全相连。隐藏层我们在前面描述了仿射变换,它是一个带有偏置项的线性变换。首先,回想下之前下图中所示的softmax回归的模型结构。该模型通过单个仿射变换将我们的输入直接映射到输出,然后进行softmax操作。如果我们的标签通过仿射变换后确实与我们的输入数据相关,那么这种方法就足够了。但是,仿射变换中的线性是一个很强的假设。我们的数据可能会有一种表示,这种表示会考虑到我们的特征之
2021-10-05 14:58:43 1542
原创 14_深度学习_softmax回归的简洁实现
通过深度学习框架的高级API也能更方便地实现分类模型。让我们继续使用Fashion-MNIST数据集,并保持批量大小为256。import torchfrom torch import nnfrom d2l import torch as d2lbatch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)初始化模型参数由于sofrmax回归的输出层是一个全连接层,因此,为了实现我们的模型,我们
2021-10-05 11:10:08 184
原创 13_深度学习_图像分类数据集
目前广泛使用的图像分类数据集之一是MNIST数据集。如今,MNIST数据集更像是一个健全的检查,而不是一个基准。为了提高难度,我们将在接下来的章节中讨论在2017年发布的性质相似但相对复杂的Fashion-MNIST数据集。import torchimport torchvisionfrom torch.utils import datafrom torchvision import transformsfrom d2l import torch as d2ld2l.use_svg_displ
2021-10-04 23:08:02 844
原创 12_交叉熵损失函数
图像分类任务我们希望根据图片动物的轮廓、颜色等特征,来预测动物的类别,有三种可预测类别:猫、狗、猪。假设我们当前有两个模型(参数不同),这两个模型都是通过softmax的方式得到对于每个预测结果的预测值。模型1:预测真实是否正确0.3 0.3 0.40 0 1 (猪)正确0.3 0.4 0.30 1 0 (狗)正确0.1 0.2 0.71 0 0 (猫)错误模型1: 对于样本1和样本2以非常微弱的优势判断正确,对于样本3的判断则彻底错误。模型2:
2021-10-04 22:40:11 191
原创 11_softmax一分钟理解
softmax函数又称为归一化指数函数。举例假如模型对一个三分类问题的预测结果为-3、1.5、2.7。用softmax将模型结果转为概率的步骤如下:将预测结果转化为非负数y1 = exp(x1) = exp(-3) = 0.05y2 = exp(x2) = exp(1.5) = 4.48y3 = exp(x3) = exp(2.7) = 14.88各种预测结果概率之和等于1z1 = y1/(y1+y2+y3) = 0.05/(0.05+4.48+14.88) = 0.0026z2 =
2021-10-04 21:59:31 99
原创 10_softmax回归
在前面我们分别了解了线性回归、从头实现了线性回归、使用深度学习框架的高级API来完成繁重的工作。回归可以用于预测多少的问题。比如预测房屋被售出价格,或者棒球队可能获得的胜利数,又或者患者住院的天数。事实上,我们经常对分类感兴趣:不是问“多少”,而是问“哪一个”。通常,机器学习实践者用分类这个词来描述两个有微妙差别的问题:我们只对样本的硬性类别感兴趣,即属于哪个类别我们希望得到软性类别,即得到属于每个类别的概率这两者的界限往往很模糊。其中一个原因是,即使我们只关系硬性类别,我们仍然使用软类别的
2021-10-04 21:43:41 113
原创 最大似然估计
目的最大概率反推模型的参数值。方法利用已知的样本结果信息。前提所有的采样都是独立同分布的。理解首先看一下似然函数p(x∣θ)p(x \mid \theta)p(x∣θ)的理解。对于这个函数,输入有两个:xxx表示某一个具体的数据;θ\thetaθ表示模型的参数。如果θ\thetaθ是已知确定的,xxx是变量,这个函数叫做概率函数,它描述对于不同的样本点xxx,其出现的概率是多少。如果xxx是已知确定的,θ\thetaθ是变量,这个函数叫做似然函数,它描述对于不同的模型参数,出现xxx这个
2021-10-04 16:32:00 505
原创 9_深度学习_线性回归的从零开始实现
在了解线性回归的关键思想之后,可以通过代码来手动实现线性回归了。我们将从零开始实现整个方法,包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。在现代深度学习框架几乎可以自动化进行所有这些工作的前提下,我们了解更细致的工作原理将方便我们自定义模型、自定义层或自定义损失函数。在这一节中,我们将只使用张量和自动求导。import randomimport torchfrom d2l import torch as d2l生成数据集我们将根据带有噪声的线性模型构造一个人造数据集。我们的任务是
2021-10-03 23:14:49 300
原创 8_深度学习_线性回归的简洁实现
我们将进一步介绍如何通过使用深度学习框架来简洁地实现线性回归模型。生成数据集import numpy as npimport torchfrom torch.utils import datafrom d2l import torch as d2ltrue_w = torch.tensor([2, -3.4])true_b = 4.2features, labels = d2l.synthetic_data(true_w, true_b, 1000)读取数据集我们可以调用框架中现有的
2021-10-03 22:54:59 320
原创 功率谱密度
功率谱密度简介PSD(Power Spectrum Density)。PSD定义为单位频带内的信号功率。MATLAB中PSD函数Hpsd = dspdata.psd(Data)最简单的一种计算psd方式。Hpsd = dspdata.psd(Data, Frequencies)计算功率谱密度的频率矢量。这个矢量的范围取决于谱型值。对于单侧,默认范围可以为[0, Fs/2]。对于双侧,可以为[0,Fs]。Hpsd = dspdata.psd(...,'Fs',Fs)使用采样率Fs。
2021-10-03 21:19:49 4884
原创 7_深度学习_线性神经网络
在介绍深度神经网络之前,我们需要了解神经网络训练的基础知识。我们将介绍神经网络的整个训练过程,包括:定义简单的神经网络架构数据处理指定损失函数和如何训练模型经典统计学中的线性回归和softmax回归可以视为线性神经网络。以上内容将为其他部分中更复杂的技术奠定基础。线性回归回归是指一类为一个或多个自变量与因变量之间关系建模的方法。在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。在机器学习领域中的大多数任务通常都与预测有关。当我们想预测一个数值时,就会涉及到回归问题。但不是
2021-10-03 17:31:01 585
原创 6_深度学习_自动求导
求导是几乎所有深度学习优化算法的关键步骤。深度学习框架通过自动计算导数,即,自动求导,来加快这项工作。实际中,根据我们设计的模型,系统会构建一个计算图,来跟踪计算哪些数据通过哪些操作组合起来产生输出。自动求导使系统能够随后反向传播梯度。这里,反向传播只是意味着跟踪整个计算图,填充关于每个参数的偏导数。一个简单的例子作为一个演示例子,假设我们想对函数y=2x⊤xy=2 \mathbf{x}^{\top} \mathbf{x}y=2x⊤x关于列向量x\mathbf{x}x求导。首先,我们创建变量xxx并为
2021-10-03 16:06:18 604
原创 5_深度学习_微分
在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情况下,变得更好意味着最小化一个损失函数,即一个衡量“我们的模型有多糟糕”这个问题的分数。最终,我们真正关系的是生成一个能够在我们从未见过的数据上表现良好的模型。但我们只能将模型与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:优化:用模型拟合观测数据的过程。泛化:数学原理和实践者的智慧,能够指导我们生成出有效性超出用于
2021-10-02 16:43:29 242
原创 4_深度学习_线性代数
标量标量由普通小写字母表示(例如,x、y和z)。我们用R\mathbb{R}R表示所有(连续)实数标量的空间。标量由只有一个元素的张量表示。下面代码,我们实例化了两个标量,并使用它们执行一些熟悉的算数运算,即加法、乘法、除法和指数。import torchx = torch.tensor([3.0])y = torch.tensor([2.0])x + y, x * y, x / y, x ** ytensor([5]), tensor([6]), tensor([1.5]), tens
2021-10-01 23:03:20 262
原创 3_深度学习_数据预处理
在Python中常用的数据分析工具中,通常使用pandas软件包。像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。因此,我们将简要介绍使用pandas预处理原始数据并将原始数据转换为张量格式的步骤。读取数据集举个例子,我们首先创建一个人工数据集,并存储在csv(通过逗号分隔值)的文件…/data/house_tiny.csv中。以其他格式存储的数据也可以通过类似的方式进行处理。下面的mkdir_if_not_exist函数可以确保目录…/data存在。注意,注释#@sav
2021-10-01 14:50:36 172
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人