1.哨兵机制
在进行哨兵机制学习的时候,我们首先来看看为什么需要哨兵机制
在主从集群模式下,如果从库发生故障了,客户端可以继续向主库或其他从库发送请求,进行相关的操作,但是如果主库发生故障了,那就直接会影响到从库的同步,因为从库没有相应的主库可以进行数据复制操作了。
而且,如果客户端发送的都是读操作请求,那还可以由从库继续提供服务,这在纯读的业务场景下还能被接受。但是,一旦有写操作请求了,按照主从库模式下的读写分离要求,需要由主库来完成写操作。此时,也没有实例可以来服务客户端的写操作请求了,如下图所示:
所以,如果主库挂了,我们就需要运行一个新主库,比如说把一个从库切换为主库,把它当成主库。这就涉及到三个问题:
- 主库真的挂了吗?
- 该选择哪个从库作为主库?
- 怎么把新主库的相关信息通知给从库和客户端呢?
这就是哨兵机制的作用了,在Redis主从集群中,哨兵机制是实现主从库自动切换的关键机制,它有效地解决了主从复制模式下故障转移的这三个问题。
1.1哨兵机制的基本流程
哨兵其实就是一个运行在特殊模式下的Redis进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。
-
1.监控,监控是指哨兵进程在运行时,周期性地给所有的主从库发送PING命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的PING命令,哨兵就会把它标记为“下线状态”;同样,如果主库也没有在规定时间内响应哨兵的PING命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。
-
2.选主,主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。
-
3.通知,哨兵会把新主库的连接信息发给其他从库,让它们执行replicaof命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。(通知其他从库和客户端)
在这三个任务中,通知任务相对来说比较简单,哨兵只需要把新主库信息发给从库和客户端,让它们和新主库建立连接就行,并不涉及决策的逻辑。但是,在监控和选主这两个任务中,哨兵需要做出两个决策:
- 在监控任务中,哨兵需要判断主库是否处于下线状态;
- 在选主任务中,哨兵也要决定选择哪个从库实例作为主库。
你首先要知道的是,哨兵对主库的下线判断有“主观下线”和“客观下线”两种。那么,为什么会存在两种判断呢?它们的区别和联系是什么呢?
1.1.1 哨兵对主库下线的监控——主观下线(一个哨兵)和客观下线(一半以上的哨兵)
什么是主观下线:哨兵进程会使用PING命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。如果哨兵发现主库或从库对PING命令的响应超时了,那么,哨兵就会先把它标记为“主观下线”。
如果检测的是从库,那么,哨兵简单地把它标记为“主观下线”就行了,因为从库的下线影响一般不太大,集群的对外服务不会间断。(从库主观下线就行,因为影响不大)
但是,如果检测的是主库,那么,哨兵还不能简单地把它标记为“主观下线”,开启主从切换。因为很有可能存在这么一个情况:那就是哨兵误判了,其实主库并没有故障。可是,一旦启动了主从切换,后续的选主和通知操作都会带来额外的计算和通信开销。(主库还需要进行客观下线才能进行选主)
首先,我们要知道啥叫误判。很简单,就是主库实际并没有下线,但是哨兵误以为它下线了。误判一般会发生在集群网络压力较大、网络拥塞,或者是主库本身压力较大的情况下。
怎么减少误判:(引入哨兵集群)
通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。
在判断主库是否下线时,不能由一个哨兵说了算,只有大多数的哨兵实例,都判断主库已经“主观下线”了,主库才会被标记为“客观下线”,这个叫法也是表明主库下线成为一个客观事实了。这个判断原则就是:少数服从多数。同时,这会进一步触发哨兵开始主从切换流程。
如下图所示,Redis主从集群有一个主库、三个从库,还有三个哨兵实例。在图片的左边,哨兵2判断主库为“主观下线”,但哨兵1和3却判定主库是上线状态,此时,主库仍然被判断为处于上线状态。在图片的右边,哨兵1和2都判断主库为“主观下线”,此时,即使哨兵3仍然判断主库为上线状态,主库也被标记为“客观下线”了。
简单来说,“客观下线”的标准就是,当有N个哨兵实例时,最好要有N/2 + 1个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”。这样一来,就可以减少误判的概率,也能避免误判带来的无谓的主从库切换。(当然,有多少个实例做出“主观下线”的判断才可以,可以由Redis管理员自行设定)。
1.1.2哨兵如何选主
一般来说,我把哨兵选择新主库的过程称为**“筛选+打分”。简单来说,我们在多个从库中,先按照一定的筛选条件**,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库,如下图所示:
1.一定的筛选条件指的是什么条件:
- 保证所选的从库仍然在线运行
- 判断它之前的网络连接状态是否正常
如果从库总是和主库断连,而且断连次数超出了一定的阈值,我们就有理由相信,这个从库的网络状况并不是太好,就可以把这个从库筛掉了。
怎么判断从库的网络连接状态?你使用配置项down-after-milliseconds * 10。其中,down-after-milliseconds是我们认定主从库断连的最大连接超时时间。
- 1.如果在down-after-milliseconds毫秒内,主从节点都没有通过网络联系上,我们就可以认为主从节点断连了。
- 2.如果发生断连的次数超过了10次,就说明这个从库的网络状况不好,不适合作为新主库。
2.一定的打分规则指的是什么规则:
我们可以分别按照三个规则依次进行三轮打分,这三个规则分别是从库优先级、从库复制进度以及从库ID号。**只要在某一轮中,有从库得分最高,那么它就是主库了,选主过程到此结束。**如果没有出现得分最高的从库,那么就继续进行下一轮。
-
第一轮:优先级最高的从库得分高。(用户设置)
用户可以通过slave-priority配置项,给不同的从库设置不同优先级。比如,你有两个从库,它们的内存大小不一样,你可以手动给内存大的实例设置一个高优先级。在选主时,哨兵会给优先级高的从库打高分,如果有一个从库优先级最高,那么它就是新主库了。如果从库的优先级都一样,那么哨兵开始第二轮打分。
-
第二轮:和旧主库同步程度最接近的从库得分高。
这个规则的依据是,如果选择和旧主库同步最接近的那个从库作为主库,那么,这个新主库上就有最新的数据。
如何判断从库和旧主库间的同步进度呢?
主从库同步时有个命令传播的过程。在这个过程中,主库会用master_repl_offset记录当前的最新写操作在repl_backlog_buffer中的位置,而从库会用slave_repl_offset这个值记录当前的复制进度。此时,我们想要找的从库,它的slave_repl_offset需要最接近master_repl_offset。如果在所有从库中,有从库的slave_repl_offset最接近master_repl_offset,那么它的得分就最高,可以作为新主库。
就像下图所示,旧主库的master_repl_offset是1000,从库1、2和3的slave_repl_offset分别是950、990和900,那么,从库2就应该被选为新主库。
-
第三轮:ID号小的从库得分高。
每个实例都会有一个ID,这个ID就类似于这里的从库的编号。目前,Redis在选主库时,有一个默认的规定:在优先级和复制进度都相同的情况下,ID号最小的从库得分最高,会被选为新主库。
到这里,新主库就被选出来了,“选主”这个过程就完成了。
我们再回顾下这个流程。首先,哨兵会按照在线状态、网络状态,筛选过滤掉一部分不符合要求的从库,然后,依次按照优先级、复制进度、ID号大小再对剩余的从库进行打分,只要有得分最高的从库出现,就把它选为新主库。
1.1.3 哨兵通知–通知其他从库和客户端
哨兵会把新主库的连接信息发给其他从库,让它们执行replicaof命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。(通知其他从库和客户端)
2.哨兵集群
如何保证哨兵服务不可用?当然是搭建高可用的哨兵集群,如果解决哨兵机制选主时的主观下线问题?当然是搭建哨兵集群采用客观下线
一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。
如果你部署过哨兵集群的话就会知道,在配置哨兵的信息时,我们只需要用到下面的这个配置项,设置主库的IP和端口,并没有配置其他哨兵的连接信息。
sentinel monitor <master-name> <ip> <redis-port> <quorum>
这些哨兵实例既然都不知道彼此的地址,又是怎么组成集群的呢?要弄明白这个问题,我们就需要学习一下哨兵集群的组成和运行机制了。
2.1哨兵集群之间如何通信
哨兵实例之间可以相互发现,要归功于Redis提供的pub/sub机制,也就是发布/订阅机制。
哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的IP地址和端口。
除了哨兵实例,我们自己编写的应用程序也可以通过Redis进行消息的发布和订阅。所以,为了区分不同应用的消息,Redis会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。
在主从集群中,主库上有一个名为“__sentinel__:hello
”的频道,不同哨兵就是通过它来相互发现,实现互相通信的。
我来举个例子,具体说明一下。在下图中,哨兵1把自己的IP(172.16.19.3)和端口(26579)发布到“__sentinel__:hello
”频道上,哨兵2和3订阅了该频道。那么此时,哨兵2和3就可以从这个频道直接获取哨兵1的IP地址和端口号。
然后,哨兵2、3可以和哨兵1建立网络连接。通过这个方式,哨兵2和3也可以建立网络连接,这样一来,哨兵集群就形成了。它们相互间可以通过网络连接进行通信,比如说对主库有没有下线这件事儿进行判断和协商。
哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。
2.2哨兵集群如何跟从库通信
这是由哨兵向主库发送INFO命令来完成的。就像下图所示,哨**兵2给主库发送INFO命令,主库接受到这个命令后,就会把从库列表返回给哨兵。**接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。哨兵1和3可以通过相同的方法和从库建立连接。
但是,哨兵不能只和主、从库连接。因为,主从库切换后,客户端也需要知道新主库的连接信息,才能向新主库发送请求操作。所以,哨兵还需要完成把新主库的信息告诉客户端这个任务。
而且,在实际使用哨兵时,我们有时会遇到这样的问题:如何在客户端通过监控了解哨兵进行主从切换的过程呢?比如说,主从切换进行到哪一步了?这其实就是要求,客户端能够获取到哨兵集群在监控、选主、切换这个过程中发生的各种事件。
此时,我们仍然可以依赖pub/sub机制,来帮助我们完成哨兵和客户端间的信息同步。
2.3 哨兵集群如何跟客户端通信
从本质上说,哨兵就是一个运行在特定模式下的Redis实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供pub/sub机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。
频道有这么多,一下子全部学习容易丢失重点。为了减轻你的学习压力,我把重要的频道汇总在了一起,涉及几个关键事件,包括主库下线判断、新主库选定、从库重新配置。
知道了这些频道之后,你就可以让客户端从哨兵这里订阅消息了。具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。
举个例子,你可以执行如下命令,来订阅“所有实例进入客观下线状态的事件”:
SUBSCRIBE +odown
当然,你也可以执行如下命令,订阅所有的事件:
PSUBSCRIBE *
当哨兵把新主库选择出来后,客户端就会看到下面的switch-master事件。这个事件表示主库已经切换了,新主库的IP地址和端口信息已经有了。这个时候,客户端就可以用这里面的新主库地址和端口进行通信了。
switch-master <master name> <oldip> <oldport> <newip> <newport>
有了这些事件通知,客户端不仅可以在主从切换后得到新主库的连接信息,还可以监控到主从库切换过程中发生的各个重要事件。这样,客户端就可以知道主从切换进行到哪一步了,有助于了解切换进度。
好了,有了pub/sub机制,哨兵和哨兵之间、哨兵和从库之间、哨兵和客户端之间就都能建立起连接了,再加上我们上节课介绍主库下线判断和选主依据,哨兵集群的监控、选主和通知三个任务就基本可以正常工作了。不过,我们还需要考虑一个问题:主库故障以后,哨兵集群有多个实例,那怎么确定由哪个哨兵来进行实际的主从切换呢?
2.4由哪一个哨兵进行主从切换(leader选举)
确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。在具体了解这个过程前,我们再来看下,判断“客观下线”的仲裁过程。
主观下线是怎么转换成客观下线的?
任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送is-master-down-by-addr命令。接着,其他实例会根据自己和主库的连接情况,做出Y或N的响应,Y相当于赞成票,N相当于反对票。
一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的quorum配置项设定的。例如,现在有5个哨兵,quorum配置的是3,那么,一个哨兵需要3张赞成票,就可以标记主库为“客观下线”了。这3张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。
Leader选举是怎么进行的?
此时,这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。这个投票过程称为“Leader选举”。因为最终执行主从切换的哨兵称为Leader,投票过程就是确定Leader。(给自己投票了就不能给别人投票了)
在投票过程中,任何一个想成为Leader的哨兵,要满足两个条件:
- 第一,拿到半数以上的赞成票;
- 第二,拿到的票数同时还需要大于等于哨兵配置文件中的quorum值。
以3个哨兵为例,假设此时的quorum设置为2,那么,任何一个想成为Leader的哨兵只要拿到2张赞成票,就可以了。
在T1时刻,S1判断主库为“客观下线”,它想成为Leader,就先给自己投一张赞成票,然后分别向S2和S3发送命令,表示要成为Leader。
在T2时刻,S3判断主库为“客观下线”,它也想成为Leader,所以也先给自己投一张赞成票,再分别向S1和S2发送命令,表示要成为Leader。
在T3时刻,S1收到了S3的Leader投票请求。因为S1已经给自己投了一票Y,所以它不能再给其他哨兵投赞成票了,所以S1回复N表示不同意。同时,S2收到了T2时S3发送的Leader投票请求。因为S2之前没有投过票,它会给第一个向它发送投票请求的哨兵回复Y,给后续再发送投票请求的哨兵回复N,所以,在T3时,S2回复S3,同意S3成为Leader。
在T4时刻,S2才收到T1时S1发送的投票命令。因为S2已经在T3时同意了S3的投票请求,此时,S2给S1回复N,表示不同意S1成为Leader。发生这种情况,是因为S3和S2之间的网络传输正常,而S1和S2之间的网络传输可能正好拥塞了,导致投票请求传输慢了。
最后,在T5时刻,S1得到的票数是来自它自己的一票Y和来自S2的一票N。而S3除了自己的赞成票Y以外,还收到了来自S2的一票Y。此时,S3不仅获得了半数以上的Leader赞成票,也达到预设的quorum值(quorum为2),所以它最终成为了Leader。接着,S3会开始执行选主操作,而且在选定新主库后,会给其他从库和客户端通知新主库的信息。
如果S3没有拿到2票Y,那么这轮投票就不会产生Leader。哨兵集群会等待一段时间(也就是哨兵故障转移超时时间的2倍),再重新选举。这是因为,哨兵集群能够进行成功投票,很大程度上依赖于选举命令的正常网络传播。如果网络压力较大或有短时堵塞,就可能导致没有一个哨兵能拿到半数以上的赞成票。所以,等到网络拥塞好转之后,再进行投票选举,成功的概率就会增加。
需要注意的是,如果哨兵集群只有2个实例,此时,一个哨兵要想成为Leader,必须获得2票,而不是1票。所以,如果有个哨兵挂掉了,那么,此时的集群是无法进行主从库切换的。因此,通常我们至少会配置3个哨兵实例。这一点很重要,你在实际应用时可不能忽略了。