Flume
- 解压安装包
- 修改conf/flume-env.sh,设置java_home
案例
官方案例
创建一个conf文件
# example.conf: A single-node Flume configuration
# Name the components on this agent
a1.sources = r1 # r1:表示a1的输入源
a1.sinks = k1 # k1:表示a1的输出目的地
a1.channels = c1 # c1:表示a1的缓冲区
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 # put
a1.sinks.k1.channel = c1 # take
单节点启动监听端口
$ bin/flume-ng agent --conf /flume/conf --conf-file example.conf --name a1 -Dflume.root.logger=INFO,console
1.1取本地文件到HDFS案例
案例需求:实时监控Hive日志,上传到HDFS
-
flume想要将数据输出到HDFS,必须持有Hadoop相关的jar包
-
创建flume-file-hdfs.conf文件
# Name the components on this agent a2.sources = r2 a2.sinks = k2 a2.channels = c2 # Describe/configure the source #定义source类型为exec可执行命令的 a2.sources.r2.type = exec a2.sources.r2.command = tail -F /home/admin/modules/apache-hive-1.2.2-bin/hive.log #执行shell脚本的绝对路径 a2.sources.r2.shell = /bin/bash -c # Describe the sink a2.sinks.k2.type = hdfs a2.sinks.k2.hdfs.path = hdfs://linux01:8020/flume/%Y%m%d/%H #上传文件的前缀 a2.sinks.k2.hdfs.filePrefix = logs- #是否按照时间滚动文件夹 a2.sinks.k2.hdfs.round = true #多少时间单位创建一个新的文件夹 a2.sinks.k2.hdfs.roundValue = 1 #重新定义时间单位 a2.sinks.k2.hdfs.roundUnit = hour #是否使用本地时间戳 a2.sinks.k2.hdfs.useLocalTimeStamp = true #积攒多少个Event才flush到HDFS一次 a2.sinks.k2.hdfs.batchSize = 1000 #设置文件类型,可支持压缩 a2.sinks.k2.hdfs.fileType = DataStream #多久生成一个新的文件 a2.sinks.k2.hdfs.rollInterval = 600 #设置每个文件的滚动大小 a2.sinks.k2.hdfs.rollSize = 134217700 #文件的滚动与Event数量无关 a2.sinks.k2.hdfs.rollCount = 0 #最小冗余数 a2.sinks.k2.hdfs.minBlockReplicas = 1 # Use a channel which buffers events in memory a2.channels.c2.type = memory a2.channels.c2.capacity = 1000 a2.channels.c2.transactionCapacity = 100 # Bind the source and sink to the channel a2.sources.r2.channels = c2 a2.sinks.k2.channel = c2
1.2监控目录文件到HDFS案例
-
创建文件flume-dir-hdfs.conf
a3.sources = r3 a3.sinks = k3 a3.channels = c3 # Describe/configure the source a3.sources.r3.type = spooldir a3.sources.r3.spoolDir = /home/admin/modules/apache-flume-1.7.0-bin/upload a3.sources.r3.fileHeader = true a3.sources.r3.fileSuffix = .COMPLETED #忽略所有以.tmp结尾的文件,不上传 a3.sources.r3.ignorePattern = ([^ ]*\.tmp) # Describe the sink a3.sinks.k3.type = hdfs a3.sinks.k3.hdfs.path = hdfs://linux01:8020/flume/upload/%Y%m%d/%H #上传文件的前缀 a3.sinks.k3.hdfs.filePrefix = upload- #是否按照时间滚动文件夹 a3.sinks.k3.hdfs.round = true #多少时间单位创建一个新的文件夹 a3.sinks.k3.hdfs.roundValue = 1 #重新定义时间单位 a3.sinks.k3.hdfs.roundUnit = hour #是否使用本地时间戳 a3.sinks.k3.hdfs.useLocalTimeStamp = true #积攒多少个Event才flush到HDFS一次 a3.sinks.k3.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a3.sinks.k3.hdfs.fileType = DataStream #多久生成一个新的文件 a3.sinks.k3.hdfs.rollInterval = 600 #设置多大生成新文件 a3.sinks.k3.hdfs.rollSize = 134217700 #设置文件的滚动与Event数量无关 a3.sinks.k3.hdfs.rollCount = 0 #副本数 a3.sinks.k3.hdfs.minBlockReplicas = 1 # Use a channel which buffers events in memory a3.channels.c3.type = memory a3.channels.c3.capacity = 1000 a3.channels.c3.transactionCapacity = 100 # Bind the source and sink to the channel a3.sources.r3.channels = c3 a3.sinks.k3.channel = c3
-
开启监控
$ bin/flume-ng agent --conf /flume/conf --conf-file flume-dir-hdfs.conf --name a3
1.3单数据源多出口案例
-
单source、Channel多Sink组(负载均衡)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z14A5tj5-1591837118068)(assets/1590888106025.png)]
-
创建flume1-telnet-flume.conf
# Name the components on this agent a1.sources = r1 a1.sinkgroups = g1 a1.sinks = k1 k2 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 #要监控的端口 a1.sinkgroup.g1.processor.type = load_balance #负载均衡 a1.sinkgroup.g1.processor.backoff = true a1.sinkgroup.g1.processor.selector = round_robin #sink1、sink2轮循,也可设置为随机 random a1.sinkgroup.g1.processor.selector.maxTimeOut = 10000 # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = linux01 a1.sinks.k1.port = 4141 a1.sinks.k2.type = avro a1.sinks.k2.hostname = linux01 a1.sinks.k2.port = 4142 # Describe the channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinkgroups.g1.sinks = k1 k2 a1.sinks.k1.channel = c1 a1.sinks.k2.channel = c1
-
创建flume2-flume-console1.conf
# Name the components on this agent a2.sources = r1 a2.sinks = k1 a2.channels = c1 # Describe/configure the source a2.sources.r1.type = avro a2.sources.r1.bind = linux01 a2.sources.r1.port = 4141 # Describe the sink a2.sinks.k1.type = logger # Use a channel which buffers events in memory a2.channels.c1.type = memory a2.channels.c1.capacity = 1000 a2.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a2.sources.r1.channels = c1 a2.sinks.k1.channel = c1
-
创建flume3-flume-console2.conf
# Name the components on this agent a3.sources = r1 a3.sinks = k1 a3.channels = c1 # Describe/configure the source a3.sources.r1.type = avro a3.sources.r1.bind = linux01 a3.sources.r1.port = 4142 # Describe the sink a2.sinks.k1.type = logger # Describe the channel a3.channels.c1.type = memory a3.channels.c1.capacity = 1000 a3.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a3.sources.r1.channels = c1 a3.sinks.k1.channel = c1
-
启动
# a2、a3在控制台打印 $ bin/flume-ng agent --conf /flume/conf --conf-file flume3-flume-console2.conf --name a3 -Dflume.root.logger=INFO,console $ bin/flume-ng agent --conf /flume/conf --conf-file flume2-flume-console1.conf --name a2 -Dflume.root.logger=INFO,console $ bin/flume-ng agent --conf /flume/conf --conf-file flume1-telnet-flume.conf --name a1
-
-
单source多Channel、Sink
-
创建flume1-file-flume.conf
# Name the components on this agent a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 c2 # 将数据流复制给多个channel a1.sources.r1.selector.type = replicating # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /home/admin/modules/apache-hive-1.2.2-bin/hive.log a1.sources.r1.shell = /bin/bash -c # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = linux01 a1.sinks.k1.port = 4141 a1.sinks.k2.type = avro a1.sinks.k2.hostname = linux01 a1.sinks.k2.port = 4142 # Describe the channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 a1.channels.c2.type = memory a1.channels.c2.capacity = 1000 a1.channels.c2.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 c2 a1.sinks.k1.channel = c1 a1.sinks.k2.channel = c2
-
创建flume2-flume-hdfs.conf
# Name the components on this agent a2.sources = r1 a2.sinks = k1 a2.channels = c1 # Describe/configure the source a2.sources.r1.type = avro a2.sources.r1.bind = linux01 # 需要和第一个文件一致 a2.sources.r1.port = 4141 # Describe the sink a2.sinks.k1.type = hdfs a2.sinks.k1.hdfs.path = hdfs://linux01:8020/flume2/%Y%m%d/%H #上传文件的前缀 a2.sinks.k1.hdfs.filePrefix = flume2- #是否按照时间滚动文件夹 a2.sinks.k1.hdfs.round = true #多少时间单位创建一个新的文件夹 a2.sinks.k1.hdfs.roundValue = 1 #重新定义时间单位 a2.sinks.k1.hdfs.roundUnit = hour #是否使用本地时间戳 a2.sinks.k1.hdfs.useLocalTimeStamp = true #积攒多少个Event才flush到HDFS一次 a2.sinks.k1.hdfs.batchSize = 100 #设置文件类型,可支持压缩 a2.sinks.k1.hdfs.fileType = DataStream #多久生成一个新的文件 a2.sinks.k1.hdfs.rollInterval = 600 #设置每个文件的滚动大小大概是128M a2.sinks.k1.hdfs.rollSize = 134217700 #文件的滚动与Event数量无关 a2.sinks.k1.hdfs.rollCount = 0 #最小冗余数 a2.sinks.k1.hdfs.minBlockReplicas = 1 # Describe the channel a2.channels.c1.type = memory a2.channels.c1.capacity = 1000 a2.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a2.sources.r1.channels = c1 a2.sinks.k1.channel = c1
-
创建flume3-flume-dir.conf
# Name the components on this agent a3.sources = r1 a3.sinks = k1 a3.channels = c1 # Describe/configure the source a3.sources.r1.type = avro a3.sources.r1.bind = linux01 a3.sources.r1.port = 4142 # Describe the sink a3.sinks.k1.type = file_roll # 实时滚动创建文件,默认每30秒生成一个 a3.sinks.k1.sink.directory = /home/admin/Desktop/flume3 #目录必须存在 # Describe the channel a3.channels.c1.type = memory a3.channels.c1.capacity = 1000 a3.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a3.sources.r1.channels = c1 a3.sinks.k1.channel = c1
-
启动
$ bin/flume-ng agent --conf /flume/conf --conf-file flume3-flume-dir.conf --name a3 $ bin/flume-ng agent --conf /flume/conf --conf-file flume2-flume-hdfs.conf --name a2 $ bin/flume-ng agent --conf /flume/conf --conf-file flume1-file-flume.conf --name a1
1.4多数据源汇总案例
案例需求:
hadoop3上的flume-1监控文件/opt/module/group.log
hadoop2上的flume-2监控某一个端口的数据流
flume-1与flume-2将数据发送给hadoop4上的flume-3,flume-3将最终数据打印到控制台
-
在hadoop3上创建flume1-logger-flume.conf
# Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /home/admin/modules/apache-hive-1.2.2-bin/hive.log a1.sources.r1.shell = /bin/bash -c # Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = hadoop4 #将数据汇总到hadoop4 a1.sinks.k1.port = 4141 # Describe the channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
-
在hadoop2上创建flume2-netcat-flume.conf
# Name the components on this agent a2.sources = r1 a2.sinks = k1 a2.channels = c1 # Describe/configure the source a2.sources.r1.type = netcat a2.sources.r1.bind = hadoop2 a2.sources.r1.port = 44444 # Describe the sink a2.sinks.k1.type = avro a2.sinks.k1.hostname = hadoop4 a2.sinks.k1.port = 4141 # Use a channel which buffers events in memory a2.channels.c1.type = memory a2.channels.c1.capacity = 1000 a2.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a2.sources.r1.channels = c1 a2.sinks.k1.channel = c1
-
在hadoop4上创建flume3-flume-logger.conf
# Name the components on this agent a3.sources = r1 a3.sinks = k1 a3.channels = c1 # Describe/configure the source a3.sources.r1.type = avro a3.sources.r1.bind = hadoop4 a3.sources.r1.port = 4141 # Describe the sink a3.sinks.k1.type = logger # Use a channel which buffers events in memory a3.channels.c1.type = memory a3.channels.c1.capacity = 1000 a3.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a3.sources.r1.channels = c1 a3.sinks.k1.channel = c1
-
启动
#在hadoop4控制台输出打印 hadoop4>>$ bin/flume-ng agent --conf /flume/conf --conf-file flume3-flume-logger.conf --name a3 -Dflume.root.logger=INFO,console hadoop2>>$ bin/flume-ng agent --conf /flume/conf --conf-file flume2-netcat-flume.conf --name a2 hadoop3>>$ bin/flume-ng agent --conf /flume/conf --conf-file flume1-logger-flume.conf --name a1
1.5 flume对接kafka
1.创建flume-flume-kafka.conf
#Name
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#Source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
#Channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.topic = first ## 话题
a1.sinks.k1.kafka.bootstrap.servers = hadoop1:9092,hadoop2:9092,hadoop3:9092 ## kafka的服务器地址
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
#Bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2.启动消费者
3.启动flume