检测组织中的横向鱼叉式钓鱼攻击

该研究关注于检测组织内部的横向鱼叉式网络钓鱼攻击,这种攻击首先劫持内部电子邮件账户,然后在组织内横向移动。文章提出了一种实用的实时检测方法,结合行为情境、IP、显示名称和FQDN等特征,使用无标签数据集,并设计了LSP打分系统来降低误报率。实验结果显示了方法的有效性,但也指出了一些局限性,如对外部邮件的检测无能为力,需要预训练的历史特征,以及对攻击者静默状态的检测不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Detecting Lateral Spear Phishing Attacks in Organizations

检测组织中的横向鱼叉式钓鱼攻击

1.背景

(1)会议/刊物级别

​ IET(The Institution of Engineering and Technology) Journals

2018年12月4日

(2)作者团队

Aniket Bhadane∗ , Dr. Sunil B. Mane

印度浦那工程学院计算机工程与信息技术系

(3)论文背景

鱼叉式钓鱼攻击:

鱼叉式网络钓鱼邮件是针对特定目标,利用社会工程学技术,欺骗目标进行相应的操作。


传统检测鱼叉钓鱼方法面临的问题:

  • 高误报率不适用于企业级检测
  • 鱼叉钓鱼邮件攻击率少导致的数据不平衡问题
  • 没有考虑特征值的方向性,即使只有一个或少数几个特征值给出了异常值,也将事件视为异常
  • 需要假定数据分布

横向钓鱼攻击:

横向网络钓鱼中,攻击者首先入侵目标组织中的一个节点作为立足点,然后可以在目标组织内横向移动。


横向鱼叉式网络钓鱼:

横向鱼叉式网络钓鱼是鱼叉式网络钓鱼的一种极具威胁力的形式,以组织内部一个被劫持的电子邮件账号进行钓鱼。


主要贡献:

  • 实时检测横向鱼叉式网络钓鱼的实用方法
  • 领域知识,攻击特征和作者提出的打分方法,并且使用无标签数据集
  • 适用于域内邮件有很高信任分的组织,并且不使用激进的启发式算法来规避误报率问题
  • 系统的主要目标是对现有邮件服务器检测机制进行补充,其次也可用于没有独立邮件服务器的组织

(4)相关概念和面临的挑战

横向鱼叉式网络钓鱼的第一步是通过暴力破解,窃取等手段劫持目标组织内的一个电子邮件账户,将其作为后续钓鱼攻击的入口点和立足之处。一旦建立立足点,攻击者便可以进行横向攻击以获取敏感信息,但攻击者也可以隐匿起来,仅查看受害者的会话信息,不进行后续的钓鱼活动。

有两种方法可以检测电子邮件账户劫持:

  1. 登录阶段:检测登录活动的属性
  2. 登陆后:检测其邮件发送活动

这篇文章采用的是第二种方法来检测被劫持的电子邮件账户。

注意:本文研究的是由被劫持的组织内部邮件账户发起的鱼叉式网络钓鱼,不包括员工的个人邮件账户。

面临的挑战:

  1. 横向鱼叉式网络钓鱼攻击邮件非常少,造成数据不平衡问题
  2. 域内域名邮件的信任分很高,常规异常检测系统无法检测

2.主要方法

(1)数据

印度浦那工程学院的四十名志愿者2014.7-2018.1期间的19087封电子邮件,其中域内邮件12064封。

数据集包含27个被劫持内部电子邮件账户,其中25个是一开始就知道,2个是作者提出的系统检测出来的。

(2)特征选取

包括四类特征,每一类下有一个或几个特征,每个特征可以是基于上下文或基于历史。

  1. Behavioral Context Feature Category(行为情境特征类别)
  2. IP Feature Category (IP特征类别)
  3. Display Name Feature Category (显示名称特征类别)
  4. FQDN Feature Category (FQDN特征类别)
【1】Behavioral Context Feature Category(行为情境特征类别):

Email Sending Hierarchy graph(邮件发送层级关系图):

发送者和接收者之间是否有关系?meaningful relationship?
在这里插入图片描述

计算机学院的层级关系图示例。本图不代表任何层次结构,仅用于说明层次结构概念。相关组织可以自行确定自己的层级结构

【2】IP Feature Category (IP特征类别)

基于Geo-IP映射获取发件人所在城市,该特征有两个子特征:

  • 发件人从所在城市发送邮件的次数
  • 从这个城市发送邮件的其他用户数目

因为IP-City映射并不总是可靠的,因此作者使用这个类别下的第二特特征:

基于IP-ASN映射获得ASN(自治系统号)

  • 发件人从所在ASN发送邮件次数
  • 从这个ASN发送邮件的其他用户数目
【3】Display Name Feature Category (显示名称特征类别)

横向鱼叉式网络钓鱼也可以伴随着显示名称欺骗

  • 发件人以当前显示名称发送邮件的次数 (基于历史)
  • 如果发件人的当前显示名称数量不足,将检查显示名称在词汇上是否与电子邮件地址相似 (基于上下文)
【4】FQDN Feature Category (FQDN特征类别)

FQDN(Fully Qualified Domain Name):完全限定域名

  • 检测FQDN是否是第一次出现?
  • 检查FQDN的信誉值(FQDN所在电子邮件的可疑程度)
【5】特征汇总
FeatureNature
Hierarchy Feature Category(层级图特征类):
Link between the Nodes in Hierarchy(层级图中的节点连接)(Context-based)基于上下文
Receives in BCC(在层级图中没有连接的邮件)(Context-based)基于上下文
IP Feature Cateroty(IP特征类):
City Features(城市特征)(History-based)基于历史
ASN Features(自治域特征)(History-based)基于历史
Display Name Feature Category (显示名称特征类):
Display Name History (显示名称的历史记录)(History-based)基于历史
Lexicographical Matching (词典匹配)(Context-based)基于上下文
FQDN Feature Category (FQDN特征类别)
Familiarity to Organization(与组织的相似度)(History-based)基于历史
Reputation within Organization (在组织内的信誉度)(History-based)基于历史

(3)LSP(Lateral Spear Phishing) 打分方法

使用上述特征进行打分,打分结果区间为0-1

打分结果大于0.5,判定为横向LSP
在这里插入图片描述

3.实验结果

在这里插入图片描述

4.不足之处

  • 不能检测来自组织外部的鱼叉式钓鱼邮件
  • 一些基于历史的特征,需要进行预训练
  • 只考虑了当前url的FQDN,没有考虑文本内容的FQDN
  • 如果攻击者在劫持内部邮件账户后选择保持静默状态,则该系统无法检测
    转存中…(img-5xWajYBD-1616810396341)]

4.不足之处

  • 不能检测来自组织外部的鱼叉式钓鱼邮件
  • 一些基于历史的特征,需要进行预训练
  • 只考虑了当前url的FQDN,没有考虑文本内容的FQDN
  • 如果攻击者在劫持内部邮件账户后选择保持静默状态,则该系统无法检测
  • 没有考虑外出员工的情况,导致IP特征可能不准确
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值