使用用户行为实体分析和数据可视化的异常检测

Anomaly Detection using User Entity Behavior Analytics and Data Vsualization

使用用户行为实体分析和数据可视化的异常检测

1.背景

(1)期刊/会议级别

Published in: 2021 8th International Conference on Computing for
Sustainable Global Development (INDIACom) CCF None

(2)简介

近年来,网络平台的攻击和可疑活动越来越难以识别,因为入侵者使用了更为复杂的隐蔽攻击技术。用户行为识别技术为此提供了解决方案:将当前行为与以往记录的行为进行对比,当有任何偏离正常的行为或模式时向安全团队报告。(虽然有时用户的异常行为有正当理由)

虽然理解人类的行为是一项复杂困难的工作,然而,为了理解问题的本质,并在不损失时间和资源的情况下,让网络安全人员做出富有成效的决策,需要对用户的配置文件和数据进行更深入的了解。
在这篇研究论文中,作者探讨了这些类型的问题,应该基于多管齐下的过程,包括理解不同的集群或组,并识别它们的任务和它们的相似性。
该方法包括提取用户的常见任务,以整合用户行为。然后确定具有类似用法的用户组。根据用户的行为,我们可以将它们按顺序排列,形成一个框架或结构,记住用户概要视图。这是一种以用户为中心的方法,利用适当的机器学习算法和优雅的分析过程,通过对多个用户组的识别和比较,在单个聚类中比较一个用户,并根据他们的不同性质分析他们的特征,形成独特的基于角色的群体。用户违反组的行为可以触发警告[10]。
在接下来的章节中,作者回顾了之前在UEBA所做的工作,并解释了所涉及的理论框架。基于这个框架,他们使用Tableau建立了一个仪表板来分析数据集并识别异常。

2.相关工作

  1. 用户行为分析专注于跟踪用户的行为,IP地址,并为他们的使用建立一个配置文件。任何在使用上表现出相似的用户或IP地址都被分组在一起形成集群。集群行为对所有用户配置文件都是通用的。任何用户在访问、位置、使用的IP地址方面的使用偏差都被算法检测为潜在异常[1]。

  2. UBA包括检查各种用户行为模式,然后使用算法和其他工具对用户进行分类和配置。任何偏离正常行为的行为都是可疑行为[3]。

  3. 为了中和网络上的现代网络威胁,使用了许多新的安全工具,如用户实体行为分析(UEBA)过程。该过程中使用了机器学习、统计分析和各种算法,从而识别组织网络[2]中的实时入侵。

  4. UEBA的主要目标是检测网络和企业应用中用户的行为和动作模式。UEBA帮助识别被泄露的用户帐户,来自内部和外部的安全漏洞,以及内部员工[3]的访问违规。异常检测模型基于这样一种假设,即使用违规可以通过对用户记录及其行为的适当审计技术来识别。这些模型独立于任何特定的系统、环境,可以作为通用框架[4],[13],[14]

3.理论框架

UEBA通常由机器学习支持,机器学习使用数学建模技术来分析和识别用户、网络实体,并根据他们的常见行为、访问级别和访问位置对他们进行分组。因此,对组织来说,异常检测是一种可行的方法。UBA工具的基本特征,主要是多步骤策略。它涉及从用户活动、实体和系统日志[2]中收集的数据。接下来,它将使用统计和机器学习算法(如奇异值分解[6])检查收集的数据。
UEBA模型为每个实体和用户创建一个基线概要文件,并根据它们预期的行为模式对它们进行分组。此外,它还记录对正常行为的偏离。如果用户或实体的行为异常,则UEBA工具通过统计分析估计偏差程度,并通过警报通知网络安全团队。
一种直接的方法是通过检查数据、访问控制列表、通常的访问点和位置,明确定义用户和实体的正常和异常行为,并将任何违规行为归类为异常行为,将其标记[7]、[8]。
UEBA没有对安全事件或网络设备的监管;相反,它跟踪组织内的所有用户和实体。特别是,UEBA的基础是内部威胁,其中包括员工违背自己的组织,将用户帐户暴露给第三方和外部人士,对服务器,企业软件,和网络实体构成任何组织的IT基础设施的主要部分[5]。

方法论:
数据集的样本量约为14,223条属于印度大公司的用户记录。该数据集包含与组织雇员的互联网使用有关的详细信息。用户记录由用户名、公司名称、访问位置(城市和国家)、登录IP地址、访问日期和月份等字段组成。每个用户属于一个或多个公司。每个IP地址由一个或多个用户使用,这些用户属于一个或多个公司。数据集分布在特定年份的两个月,访问位置包括印度的各个城市。研究人员利用Tableau可视化数据,并探索和检测异常。计算字段被创建来根据用户所属的公司数量对用户进行分类,并根据使用它们的公司数量对IP地址进行分类。只有一个公司使用的IP地址被分类为静态IP,其余的是动态IP。可视化被创建来识别属于多个公司的用户和IP是动态的。它们符合潜在异常的条件。下面几节重点介绍使用Tableau的架构、设计和数据分析。

4.模型结构

在这里插入图片描述
图2为架构图,用户通过办公场所内外不同位置对应的不同IP访问公司网络。可能是由于未授权用户访问了某个组织的IP地址,或者该IP地址不属于该组织的静态IP列表。
图3。是互联网使用数据集,它包含各种数据类型,如字符串、地理和日期&时间。数据集中没有空值。数据集不需要任何清理或预处理。使用的建模技术是UEBA,用于数据可视化的工具是Tableau。

5.实验和数据分析

目标是开发可视化仪表板,使用数据可视化工具Tableau检测数据中的异常。仪表板是可视化的,可以帮助任何组织做出关键决策。作者在Tableau中探索和创建计算字段。这些是简单的脚本或函数,由数据集中各种内置关键字和列名的组合创建。计算字段用于从给定的时间字段提取月和周信息。这将创建两个名为date和time的派生字段。
在这里插入图片描述
该文主要利用上图类似的方法进行分组。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值