线性变分法研究一维无限深方势阱及氢原子体系的能量及波函数
原理
量子力学中可以解析求解的问题非常少,因此发展各种近似求解方法是非常重要的。变分法为研究束缚态体系的基态及激发态能量、波函数提供了一种简便的方法。
可以证明,利用任意波函数算得的体系哈密顿量 H H H的平均值可以给出体系基态能量的上限。若选择一系列波函数分别计算哈密顿量的平均值,则其中最小值最接近基态能量,最小值对应的波函数最接近体系的基态波函数。利用这种性质,可以提出变分法来近似地求解体系的基态能量,具体操作如下:
选择一个含变分参数 λ \lambda λ的尝试波函数 ϕ ( λ ) \phi(\lambda) ϕ(λ),用它计算 H H H的平均值
⟨ H ( λ ) ⟩ = ∫ ϕ ∗ ( λ ) H ϕ ( λ ) d r ∫ ϕ ∗ ( λ ) ϕ ( λ ) d r \lang H(\lambda) \rang=\frac{\int \phi^*(\lambda)H\phi(\lambda)d \bf r}{\int \phi^*(\lambda)\phi(\lambda)d \bf r} ⟨H(λ)⟩=∫ϕ∗(λ)ϕ(λ)dr∫ϕ∗(λ)Hϕ(λ)dr然后将其对 λ \lambda λ变分取极小值 δ ⟨ H ( λ ) ⟩ δ λ ∣ λ = λ 0 = 0 \frac{\delta \lang H(\lambda) \rang}{\delta \lambda} \vert _{\lambda=\lambda_0}=0 δλδ⟨H(λ)⟩∣λ=λ0=0将上式求得的 λ 0 \lambda_0 λ0代入 H ( λ 0 ) H(\lambda_0) H(λ0),即求得基态能量的近似值。
线性变分法是变分法的一种,它的特点是采用一组波函数作为尝试波函数(它们之间不一定正交)去逼近真正的准确解。对于任意一个波函数,可以用这组波函数展开 Ψ = ∑ p C p φ p \Psi=\sum_{p}C_p \varphi_p Ψ=p∑Cpφp则能量可以表示为 E = ⟨ H ⟩ = ∑ p , q = 1 N C p ∗ C q ∗ H p q ∑ p , q = 1 N C p ∗ C q ∗ S p q E=\lang H \rang=\frac{\sum_{p,q=1}^N C_p^*C_q^*H_{pq}}{\sum_{p,q=1}^N C_p^*C_q^*S_{pq}} E=⟨H⟩=∑p,q=1NCp∗Cq∗Spq∑p,q=1NCp∗Cq∗Hpq同样地,由极值条件 δ ⟨ H ⟩ δ ⟨ C p ⟩ = 0 , p = 1 , 2... N \frac{\delta \lang H \rang}{\delta \lang C_p \rang}=0,p=1,2...N δ⟨Cp⟩δ⟨H⟩=0,p=1,2...N得 E ∑ q = 1 N C q S p q = ∑ q = 1 N C q H p q E\sum_{q=1}^N C_q S_{pq}=\sum_{q=1}^N C_q H_{pq} Eq=1∑NCqSpq=q=1∑NCqHpq即 ∑ q = 1 N ( E S p q − H p q ) C p = 0 \sum_{q=1}^N(ES_{pq}-H_{pq})C_p=0 q=1∑N(ESpq−H