知识图谱和语义网概述

本文介绍了知识图谱和语义网的发展历程、区别和技术。知识图谱包括其发展、与深度学习的差异、相关技术、经典案例及表示方式。语义网则涵盖了设计方案、相关技术、执行过程和结构。两者都是为了实现机器对数据的智能理解和处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

知识图谱和语义网概述

人工智能的发展:

  • 计算智能:规则明确的数据快速处理智能
  • 感知智能:视觉、听觉等感知的智能,人脸识别、语音识别等,现在常见的AI
  • 认知智能:理解语言、逻辑、知识的智能,机器在知识量上超越人类,推理上不如人类

一、知识图谱

1.1 知识图谱的发展

知识图谱的发展历程:在这里插入图片描述
在1960年,提出了语义网络(Semantic Networks),主要用于自言语言理解领域。它是一种用图来表示知识的结构化方式。在一个语义网络中,信息被表达为一组结点,结点之间的边用于表示结点间的关系。
在这里插入图片描述

1980年代出现了本体论(Ontology),用来刻画知识。本体主要指领域共享知识的描述方式,是语义Web、语义搜索、知识工程等的基础。在1989年Time Berners-Lee发明了万维网,实现了文本间的链接。

1998年提出语义网(THe Semantic Web),从超文本链接到语义链接。语义网是为了使得网络上的数据变得机器可读而提出的一个通用框架。Semantic Web=Data+Link。
在这里插入图片描述

2006年Tim突出强调语义网的本质是要建立开放数据之间的链接,即链接数据(LInked Data)。

Google在2012年提出了对搜索引擎的知识图谱称呼。现在知识图谱常用于指代类似Google的知识库,可用于搜索、问答、决策、AI推理等方面。

1.2 知识图谱与深度学习区别

深度学习 知识图谱
智能原理 逻辑层隐性模拟 思考层显性模拟
场景 感知智能:语音、图像、视频、文本 搜索、人机交互
特点 大量训练数据、高算力、难解释 大量知识、可解释、可理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值