社会网络、生态网络、复杂网络脆弱性分析工具
社会网络、生态网络、复杂网络、交通网络等脆弱性(随机蓄意攻击)分析工具
1.客户端更新了
增加了边攻击策略
研究目标和实际问题
这个客户端关注于复杂网络的韧性研究,旨在理解和改善网络在面临节点故障或攻击时的稳定性和功能性。这项研究的实际问题在于评估和增强网络结构的韧性,确保在关键节点失效时网络仍能维持其核心功能。这在许多产业领域中都是至关重要的,比如电力供应、交通管理和互联网通信等。
2.🆕 新思路与方法
新思路、方法或模型
蓄意攻击模拟
-
「度攻击」:通过移除网络中连接数(度)最多的节点,考察这些高度节点对网络稳定性的贡献。
-
「紧密度攻击」:移除平均距离其他所有节点最短的节点,破坏网络的快速传播能力。
-
「介数攻击」:通过移除最多最短路径经过的节点,测试网络中信息流的中断敏感性。
-
「PageRank攻击」:针对PageRank值高的节点进行攻击,这些节点在网络中的影响力和重要性更大。
-
「聚类系数攻击」:选择那些局部连接紧密、聚类系数高的节点进行移除,测试网络局部群组结构的稳定性。
-
「随机攻击」:随机选取并移除节点,作为对比基线,以评估蓄意攻击策略相对于随机事件的特定影响。
-
「基于边的属性(Edge Removal)」:选择属性值高(例如权重)的边进行移除。
以上策略提供了一个全面的视角来分析网络的脆弱性,帮助理解不同节点在网络中的作用及其对整体稳定性的影响。通过对比不同的攻击策略,我们可以更深入地了解网络的复杂动态和潜在脆弱点。
详细解读这些网络指标及其在蓄意攻击模拟中的意义: