> **最近学习复杂网络,看了一篇论文,想着去复原实现其中的原理。**
在这个研究中,我们使用复杂网络理论构建了一个模型,并对其网络特性进行了分析。以下是分析过程的三个主要步骤:
使用 TOPSIS 算法评估电网中的重要节点: 通过应用 TOPSIS 算法,我们评估了贸易网络中节点的重要性。这个评估过程基于6个指标:度中心性、接近中心性、介数中心性、特征向量中心性、PageRank值和结构洞系数。这些指标都是度量网络中节点重要性的常用方法,可以帮助我们识别网络中最具影响力的节点。
利用 SIR 模型对重要节点的传播影响力进行仿真分析: 接下来,我们使用 SIR 模型来模拟网络中重要节点的传播影响力。这个模型是用来描述感染病在人群中的传播过程,但在这里,我们将其应用于贸易网络中节点的影响力传播。在这个过程中,我们假设网络中的节点可以处于三种状态:易感(S)、感染(I)和恢复(R)。模拟的目的是了解不同节点在网络中的传播效果,以便确定对整个网络最具影响力的节点。
评估节点重要性并计算感染规模: 最后,我们结合度中心性、介数中心性、接近中心性、结构洞系数作为评估指标,评估节点在网络中的重要性。根据单一指标和 TOPSIS 评估结果,我们选取重要度排名前10的节点作为初始感染源进行传播模拟。在模拟中,我们计算了相同时间内的感染规模,以便进一步评估节点重要性和网络的稳定性。
通过这三个步骤,我们能够识别出贸易网络中最具影响力的节点,并了解这些节点在网络中的传播效果。这有助于我们了解整个贸易系统的稳定性和脆弱性,为政策制定者提供有关安全和贸易政策调整的有用信息。
要用Python实现上述步骤,你需要使用一些Python库,例如networkx和numpy。以下是一些关键步骤的示例代码:
安装必要的库:
python
!pip install networkx numpy pandas
导入所需的库和模块:
python
import networkx as nx
import numpy as np
import pandas as pd
from scipy.spatial.distance import cdist
创建一个示例网络:
python
G = nx.DiGraph() # 有向图,如果是无向图,请使用 nx.Graph()
edges = [("A", "B"), ("B", "C"), ("C", "A"), ("D", "E"), ("E", "F"), ("F", "D")]
G.add_edges_from(edges)
计算各种中心性指标:
python
degree_centrality = nx.degree_centrality(G)
closeness_centrality = nx.closeness_centrality(G)
betweenness_centrality = nx.betweenness_centrality(G)
eigenvector_centrality = nx