pytorch学习笔记(七)——loss及其梯度

pytorch学习笔记(七)——loss及其梯度

目录

典型loss

在这里插入图片描述
典型的loss有两种,第一种是均方差简称MSE。
第二种是用于分类的误差交叉熵,既可以用于二分类问题,也可以用于多分类问题。一般最后的输出要通过softmax函数,第二种loss我们放在之后的博客中讲解。

MSE

(1)MSE定义
在这里插入图片描述
为方便,我们下面讲解MSE不再除以数据个数
(2)MSE求导
在这里插入图片描述
(3)pytorch对MSE自动求导
两种求导方法:
在这里插入图片描述
方法一:autograd.grad,输入loss,和要显示信息的参数,返回参数梯度list

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值