《计算机算法设计与分析》(第5版)王晓东编著 第42页
问题描述:设 R={ r1 ,r2, ···,rn }是要进行排列的 n 个元素。其中元素 r1 ,r 2, ···,rn可能相同。试设计一个算法,列出 R 的所有不同排列。
编程任务:给定 n 以及待排列的 n 个元素。计算出这 n 个元素的所有不同排列。
数据输入:由文件 input.txt 提供输入数据。文件的第 1 行是元素个数 n,1<=n<=500。接下来的 1 行是待排列的 n 个元素。
结果输出:
程序运行结束时,将计算出的 n 个元素的所有不同排列输出到文件 output.txt 中。文件最后 1 行中的数是排列总数。输入文件示例 输出文件示例
input.txt
4
aacc
output.txt
aacc
acac
acca
caac
caca
ccaa
6
题解:
本题与全排列问题相似,也是求n个元素的所有排列,但是这n个元素里面可能有相同的元素,因此在进行排列的时候要进行判断。先说一下全排列,若把这n个元素放在一个数组里面,这n个元素的全排列就是这个数组元素不同顺序的所有组合。n个元素进行排列,可以看做把n个元素的其中一个拿到最前面,后面的元素进行全排列,比如1,2,3把1拿到最前面形成的排列是1,2,3和1,3,2。因此可以递归的构建程序,当只有一个元素的时候,全排列就是自己。
然后,本题重点是有相同的元素,因此在交换之前要进行判断,如果前面的元素依次与后面的元素进行交换,走到了一个与自己交换过的元素相同的元素的时候,就不要进行交换了。因为第一个元素已经与前面一个和它相同的元素交换过了,再与这个元素(假设这个元素与第一个元素已经交换过的元素相同,但与第一个元素不同,若待交换的元素与第一个元素相同,那就更不可能交换了,因为交换后剩下的序列就是第一次递归的序列)交换,这两次形成的序列其实是一个序列的全排列中的两种,因为交换后这两个序列中的数字都是相同的。
#include <stdio.h>
#include <stdlib.h>
int num=0;
char a[501];
int judge(char a[],int x,int i)//判断是否需要进行交换,将待交换的元素与之前已经进行交换过的元素进行比较,若待交换的元素与前面某个元素相同,就不需要再交换了。
{
int j;
if(i>x)
{
for(j=x; j<i; j++)
{
if(a[j]==a[i])return 0;
}
}
return 1;
}
void perm(char a[],int x,int y)//将从a[x]到a[y]的数进行全排列,x-y+1即进行全排列的数的个数
{
int i,t;
if(x==y)
{
num++;
for(i=0; i<=y; i++)
printf("%c",a[i]);
printf("\n");
}
else
{
for(i=x; i<=y; i++)
{
if(judge(a,x,i))//判断后进行交换
{
t=a[x];
a[x]=a[i];
a[i]=t;
perm(a,x+1,y);//递归进行下面的排列
t=a[x];
a[x]=a[i];
a[i]=t;//再交换回来,方便下一次第一个元素与后面的元素交换
}
}
}
}
int main()
{
int n,i;
scanf("%d",&n);
getchar();
for(i=0; i<n; i++)
scanf("%c",&a[i]);
perm(a,0,n-1);
printf("%d\n",num);
return 0;
}