Description
小雷有个特殊的癖好,平时喜欢收藏各种稀奇古怪的东西,譬如。。。。,还有。。。。,也包括。。。。。小雷是一个喜欢分享的童鞋,这次小雷又给大家带来一套神奇的东西,那就是举世无双的冰茶几!<o:p></o:p>
顾名思义,这些茶几被冰冻住了,最主要的是他们是易碎品,毕竟被冻住了。因此小雷要很小心翼翼的移动他们。一些茶几是冻在一起的,因此一套冰茶几分为好几部分,并且如果茶几A与B冻在一起,B与C冻在一起,那么A与C也就冻在了,即冰冻状态有传递性,ABC此时会看作一个整体。<o:p></o:p>
为了保证冰茶几的完整性,小雷每次只能移动一整块冰茶几,也就是冰冻在一起的一部分。小雷想知道他需要搬几次才能全部搬到实验室,你能帮小雷快速计算出答案么?
Input
多组输入,先输入组数T(1 < = T < = 200)。
对于每组输入,先输入一个整数n(1 < = n < = 100000),k(0 < = k < = 100000),茶几编号1~n。<o:p></o:p>
之后k行,每行两数x,y(1 < = x,y < = n),表示第x个茶几和第y个茶几冰冻在一起。
Output
对于每组输入,先输出”Case z: ”(不带引号)表示组数,再输出一个整数,表示小雷需要搬动的次数。
Sample
Input
3
3 1
1 2
5 2
1 2
3 4
5 2
1 2
2 3
Output
Case 1: 2
Case 2: 3
Case 3: 3
Hint
#include <iostream>
#include<bits/stdc++.h>
int father[100002];
int findFather(int x)
{
while(x!=father[x])
x=father[x];
return x;
}
void Union(int x,int y)
{int fatherX=findFather(x);
int fatherY=findFather(y);
if(fatherX!=fatherY)
father[fatherY]=fatherX;
}
int main()
{
int t,i,n,k,x,y,sum,p;
scanf("%d",&t);
for(p=1;p<=t;p++)
{
scanf("%d %d",&n,&k);
for(i=1;i<=n;i++)father[i]=i;
for(i=0;i<k;i++)
{
scanf("%d %d",&x,&y);
Union(x,y);
}
sum=0;
for(i=1;i<=n;i++)
{
if(father[i]==i)sum++;
}
printf("Case %d: %d\n",p,sum);
}
return 0;
}