题目描述
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。
输入
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。
当N为0时输入结束。
输出
每个测试用例的输出占一行,输出全省畅通需要的最低成本。
样例输入 Copy
4
1 2 1 1
1 3 6 0
1 4 2 1
2 3 3 0
2 4 5 0
3 4 4 0
3
1 2 1 1
2 3 2 1
1 3 1 0
0
样例输出 Copy
3
0
将那些已经畅通的道路的修建费用设置为0,这样再进行prim算法求最小生成树就相当于在已经建好的道路的基础上求最小生成树,从而求全省畅通需要的最低成本。
#include <iostream>
#include<bits/stdc++.h>
using namespace std;
int m;
struct node
{
int v,pay;
node(int a,int b)
{
v=a;
pay=b;
}
};
vector<node>g[110];
bool visit[110];
int d[110];
int INF=0x3fffffff;
int n;
int prim()
{
int sum=0;
fill(visit,visit+110,false);
fill(d,d+110,INF);
int i,j;
for(i=0; i<g[1].size(); i++)
{
int v=g[1][i].v;
d[v]=g[1][i].pay;
}
d[1]=0;
visit[1]=true;
for(i=1; i<n; i++)
{
int Min=INF,u=-1;
for(j=1; j<=n; j++)
{
if(visit[j]==false&&d[j]<Min)
{
Min=d[j];
u=j;
}
}
if(u==-1)return -1;
visit[u]=true;
sum=sum+d[u];
for(j=0; j<g[u].size(); j++)
{
int m=g[u][j].v;
if(visit[m]==false&&g[u][j].pay<d[m])
{
d[m]=g[u][j].pay;
}
}
}
return sum;
}
int main()
{
int i,a,b,c,f;
while(scanf("%d",&n)!=EOF&&n)
{
for(i=1; i<=n; i++)g[i].clear();
for(i=1; i<=(n*(n-1))/2; i++)
{
scanf("%d %d %d %d",&a,&b,&c,&f);
if(f==1)c=0;
g[a].push_back(node(b,c));
g[b].push_back(node(a,c));
}
printf("%d\n",prim());
}
return 0;
}