机器学习 + NFT,跨界联合可以擦出什么火花?

本文深入探讨了GAN(生成对抗网络)在NFT领域的应用,从基础的GAN原理到DCGAN的改进,再到conditional GAN的实践,展示了如何通过机器学习生成具有特定属性的动漫人物头像。文章通过实例和相关项目,揭示了机器学习如何与NFT结合,创造出独特的数字艺术作品。
摘要由CSDN通过智能技术生成

前几天在Github上看到一个用SN-GAN技术生成punk的项目,项目地址:https://github.com/teddykoker/cryptopunks-gan,跑了一遍感觉很有趣,所以就研究了一下生成对抗网络(GAN)的相关内容,详见下文:

一、GAN原理介绍

想要了解GAN,推荐首先阅读IanGoodfellow写的paper:“Generative Adversarial Networks”(PDF:https://arxiv.org/pdf/1406.2661.pdf),这篇paper算是这个领域的开山之作。

接下来以图片(NFT常见的表现形式)为例,解释一下GAN的基本原理。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记作G(z)。

D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。

最后博弈的结果是什么?在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。

这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。

以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:

在这里插入图片描述

简单分析一下这个公式:

整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。

D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。

G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值