
计算机视觉
文章平均质量分 97
计算机视觉相关pytorch实现
飞雪白鹿€
北京邮电大学在读博士,个人主页:www.liyangbupt.com
展开
-
从代码学习深度学习 - 目标检测前置知识(一) PyTorch 版
目标检测是计算机视觉领域中的一个核心问题,它的任务是识别图像中物体的类别并定位它们的位置。近年来,基于深度学习的目标检测算法取得了显著的进展。PyTorch 作为主流的深度学习框架之一,为目标检测的研究和应用提供了强大的支持。本篇博客旨在通过代码实例,介绍目标检测任务中一些重要的前置知识,特别是与边界框 (Bounding Box) 和锚框 (Anchor Box) 相关的概念和常用工具函数。理解这些基础知识对于后续学习和实现更复杂的目标检测模型至关重要。原创 2025-04-29 09:15:46 · 550 阅读 · 0 评论 -
从代码学习深度学习 - 微调 PyTorch 版
深度学习模型训练通常需要大量数据,但在实际应用中,我们往往难以获得足够的标记数据。例如,如果我们想构建一个识别不同类型椅子的系统,收集和标记数千甚至数万张椅子图像将耗费大量时间和资金。这种情况下,迁移学习特别是微调(fine-tuning)技术便显示出其强大优势。本文将通过一个热狗识别的实际案例,详细讲解如何在PyTorch中实现微调,帮助读者掌握这一重要技术。注意,本博客只列出了与微调相关的代码,完整代码在下方链接中给出,其中包含了详细的注释。下载链接微调是解决数据有限问题的强大工具。原创 2025-04-25 20:16:00 · 1601 阅读 · 0 评论 -
从代码学习深度学习-卷积神经网络(LeNet) PyTorch版
卷积神经网络(Convolutional Neural Network, CNN)是深度学习领域的核心技术之一,尤其在图像处理任务中表现出色。LeNet 是由 Yann LeCun 等人于 1989 年提出的早期 CNN 模型,尽管结构简单,却为现代深度学习奠定了基础。本文将通过 PyTorch 实现 LeNet-5,并结合 Fashion-MNIST 数据集进行训练和评估,帮助读者从代码角度理解 CNN 的工作原理。本文将分步展示数据加载、模型定义、训练过程及可视化工具的实现,代码均配有详细注释。原创 2025-03-25 14:09:01 · 1116 阅读 · 0 评论 -
从代码学习深度学习 - 使用块的网络(VGG)PyTorch版
深度学习是近年来人工智能领域的重要突破,而卷积神经网络(CNN)作为其核心技术之一,在图像分类、目标检测等领域展现了强大的能力。VGG(Visual Geometry Group)网络是CNN中的经典模型之一,以其模块化的“块”设计和深层结构而闻名。本篇博客将通过PyTorch实现一个简化的VGG网络,并结合代码逐步解析其构建、训练和可视化过程,帮助读者从代码层面理解深度学习的基本原理和实践方法。我们将使用Fashion-MNIST数据集进行实验,展示如何从零开始搭建并训练一个VGG模型。原创 2025-03-27 20:22:28 · 1077 阅读 · 0 评论 -
从代码学习深度学习 - 网络中的网络(NiN)PyTorch版
深度学习近年来在计算机视觉、自然语言处理等领域取得了巨大成功,而卷积神经网络(CNN)作为其核心技术之一,经历了从LeNet到AlexNet、VGG等经典模型的演进。在这些模型中,卷积层和全连接层的组合成为主流设计。然而,2014年提出的“网络中的网络”(Network in Network, NiN)模型打破了这一传统,通过引入1x1卷积和全局平均池化,显著减少了参数量并提升了模型性能。原创 2025-03-28 09:27:06 · 1414 阅读 · 0 评论 -
从代码学习深度学习 - 稠密连接网络(DenseNet)PyTorch版
深度学习近年来在计算机视觉、自然语言处理等领域取得了显著的成功,而卷积神经网络(CNN)作为深度学习的核心模型之一,不断演化出各种改进架构。其中,稠密连接网络(DenseNet)因其独特的连接方式和高效的参数利用率而备受关注。本篇博客将通过一份基于 PyTorch 的 DenseNet 实现代码,带你从代码角度深入理解这一经典网络的构建与训练过程。我们将逐步分析代码的每个部分,并结合理论知识,帮助你在实践中掌握 DenseNet 的核心思想。原创 2025-03-31 20:57:46 · 1054 阅读 · 0 评论 -
从代码学习深度学习 - 卷积神经网络(AlexNet)PyTorch版
深度学习近年来在计算机视觉领域取得了巨大突破,而这一切的起点之一,便是2012年Alex Krizhevsky等人提出的AlexNet模型。AlexNet在ImageNet挑战赛(ILSVRC)中以显著优势获胜,标志着卷积神经网络(CNN)的复兴。本篇博客通过PyTorch实现AlexNet,提供完整代码和详细文字描述,帮助你从实践中掌握深度学习的核心概念。原创 2025-03-26 09:14:58 · 494 阅读 · 0 评论 -
从代码学习深度学习 - 残差网络(ResNet)PyTorch版
深度学习近年来在计算机视觉、自然语言处理等领域取得了巨大成功,而残差网络(ResNet)作为一种经典的深度神经网络架构,因其解决了深层网络中的梯度消失问题而广受关注。ResNet通过引入“残差连接”(skip connection),使得网络可以直接学习输入和输出之间的差异,从而允许更深的网络结构。本篇博客将通过PyTorch实现一个ResNet模型,并结合代码和训练结果,带你一步步理解残差网络的原理与应用。我们将使用Fashion-MNIST数据集,通过PyTorch实现ResNet的训练过程,并展示其训原创 2025-03-30 16:18:22 · 1402 阅读 · 0 评论 -
从代码学习深度学习 - 含并行连结的网络(GoogLeNet)PyTorch版
深度学习近年来在计算机视觉、自然语言处理等领域取得了巨大成功,而卷积神经网络(CNN)作为其核心支柱之一,推动了许多突破性应用。GoogLeNet(Inception v1)是2014年ImageNet挑战赛(ILSVRC)的冠军模型,以其创新的Inception模块和高效设计脱颖而出。它不仅在性能上超越了当时的经典模型(如AlexNet和VGG),还在参数量和计算复杂度上实现了优化。原创 2025-03-29 14:32:05 · 1282 阅读 · 0 评论 -
从代码学习深度学习 - 图像增广 PyTorch 版
在深度学习中,数据是关键。尤其是在计算机视觉任务中,高质量且丰富多样的数据对模型性能有着决定性的影响。然而,获取大量标注的图像数据往往成本高昂且耗时。这时,图像增广(Image Augmentation)技术就显得尤为重要,它通过对现有数据进行变换生成更多样化的训练样本,帮助模型学习更鲁棒的特征表示,从而提高泛化能力。本文将通过代码示例,介绍如何在PyTorch框架下实现图像增广,并分析其对模型性能的影响。原创 2025-04-24 20:30:29 · 1082 阅读 · 0 评论