
自然语言处理
文章平均质量分 96
自然语言处理pytorch版
飞雪白鹿€
北京邮电大学在读博士,个人主页:www.liyangbupt.com
展开
-
从代码学习深度学习 - NLP之文本预处理 PyTorch版
在自然语言处理(NLP)中,文本预处理是构建深度学习模型的第一步。无论是语言模型还是文本分类任务,我们都需要将原始文本转化为模型可以理解的数值形式。PyTorch 作为一个强大的深度学习框架,提供了灵活的工具来实现这一过程。本文将通过一个完整的代码示例,带你从零开始理解 NLP 中的文本预处理流程。我们将以《时间机器》(The Time Machine)数据集为例,逐步解析如何读取文本、分词、构建词表、生成训练数据批次等关键步骤。所有代码都基于 PyTorch,并配有详细的测试验证。原创 2025-04-02 14:19:26 · 1005 阅读 · 0 评论 -
从代码学习深度学习 - 序列到序列学习数据预处理 PyTorch 版
在深度学习领域,序列到序列(Seq2Seq)模型是一种非常重要的架构,广泛应用于机器翻译、文本摘要和对话生成等任务。在实现 Seq2Seq 模型时,数据的预处理是至关重要的第一步,它直接影响到模型的性能和训练效果。本篇博客将基于 PyTorch 框架,通过一个完整的代码示例,详细讲解如何对“英语-法语”翻译数据集进行预处理,包括数据读取、文本清洗、词元化、词表构建以及数据迭代器的构造。通过阅读本文,你将掌握从原始文本到可用于模型训练的数据张量的完整流程,同时理解每个步骤背后的逻辑和代码实现。原创 2025-04-07 15:06:50 · 1021 阅读 · 0 评论 -
从代码学习深度学习 - LSTM PyTorch版
深度学习中的循环神经网络(RNN)及其变种长短期记忆网络(LSTM)在处理序列数据(如文本、时间序列等)方面表现出色。本篇博客将通过一个完整的PyTorch实现,带你从零开始学习如何使用LSTM进行文本生成任务。我们将基于H.G. Wells的《时间机器》数据集,逐步展示数据预处理、模型定义、训练与预测的全过程。通过代码和文字的结合,帮助你深入理解LSTM的实现细节及其在自然语言处理中的应用。数据加载与预处理(LSTM模型定义(Jupyter Notebook中的模型部分)训练与预测逻辑(原创 2025-04-04 21:00:46 · 1277 阅读 · 0 评论 -
从代码学习深度学习 - GRU PyTorch版
在深度学习领域,循环神经网络(RNN)及其变种如GRU(Gated Recurrent Unit,门控循环单元)在处理序列数据时表现出色。相比传统RNN,GRU通过更新门(Update Gate)和重置门(Reset Gate)简化了结构,同时保持了对长期依赖关系的建模能力。本篇博客将通过PyTorch实现一个基于GRU的文本生成模型,结合《The Time Machine》数据集,逐步解析代码实现的全过程。从数据预处理到模型训练,再到结果可视化,我们将深入探讨每个模块的功能,并展示完整的代码实现。原创 2025-04-04 09:36:53 · 794 阅读 · 0 评论 -
从代码学习深度学习 - 序列到序列学习 GRU编解码器 PyTorch 版
Seq2Seq 模型的核心思想是将一个输入序列(例如英语句子)通过编码器(Encoder)转化为一个固定长度的上下文向量,再由解码器(Decoder)根据该向量生成目标序列(例如法语句子)。这种编码-解码的架构最初由 RNN 实现,后来发展出 LSTM 和 Transformer 等变种。在本文中,我们将聚焦于基于 RNN 的经典实现,并通过 PyTorch 代码逐步拆解其关键组件。本文的代码来源于一个完整的机器翻译任务示例,数据集为英语-法语翻译对。原创 2025-04-08 10:28:58 · 1380 阅读 · 0 评论 -
从代码学习深度学习 - 深度循环神经网络 PyTorch 版
深度学习中的循环神经网络(RNN)因其在处理序列数据(如文本、时间序列等)方面的强大能力而备受关注。随着模型复杂度的增加,单层 RNN 的局限性逐渐显现,深度循环神经网络(Deep RNN)应运而生。深度 RNN 通过堆叠多层 RNN 单元,能够捕捉更复杂的序列模式,在自然语言处理、语音识别等领域展现出卓越的性能。本文将基于 PyTorch 实现一个深度循环神经网络,并以《时间机器》数据集为例,展示如何从数据加载到模型训练的全过程。原创 2025-04-05 10:03:40 · 1014 阅读 · 0 评论 -
从代码学习深度学习 - RNN PyTorch版
循环神经网络(RNN)是深度学习中处理序列数据的重要模型,尤其在自然语言处理和时间序列分析中有着广泛应用。本篇博客将通过一个基于 PyTorch 的 RNN 实现,结合《The Time Machine》数据集,带你从零开始理解 RNN 的构建、训练和预测过程。我们将逐步剖析代码,展示如何加载数据、定义工具函数、构建模型、绘制训练过程图表,并最终训练一个字符级别的 RNN 模型。代码中包含了数据预处理、模型定义、梯度裁剪、困惑度计算等关键步骤,适合希望深入理解 RNN 的初学者和进阶者。原创 2025-04-03 21:15:26 · 943 阅读 · 0 评论