{所有的安理会常任理事国}={美国、中国、英国、俄罗斯、法国}
属于∈
不属于∉
例:中国属于集合所有的安理会常任理事国
中国∈{所有安理会常任理事国}
例:日本不属于集合所有的安理会常任理事国
日本∉{所有安理会常任理事国}
集合是确定对象构成的集体
确定性 集合中的元素必须是确定的,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了;
确定性 集合中的元素是确定的。
可见,对于给定一个集合和一个对象,这个对象是否为这个集合的元素,只有“是”或“不是”两种情况,这就是集合中元素所具有的确定性。
例1、判断下列元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数。是集合 {4,6,8,10}
(2)我国的小河流。不是集合(没有一个标准)
(3)所有的正方形。是集合{正方形}
(4)本班跑步最快的同学。不是集合(没有一个标准)
(5)与1接近得实数全体。不是集合(不确定,多少算接近)
(6)1-10以内的所有质数。是集合{2,3,5,7}
质数,大于1的自然数中,除了1和本身以外,没有其他约束的数字。
集合中的元素特性
1.确定性
2.互异性
3.无序性
互异性 集合中的元素必须是互异的。也就是说,对于一个给定的集合,它的任何两个元素都是不同的。
因为集合中的元素是没有重复现象的,所以任何两个相同的元素在同一集合时,只能算作这个集合中的一个元素。
无序性 集合与其中元素的排列次序无关,也就是说集合中的元素是不排序的。
例如:集合{1,2}也可以写成{2,1}
总结:
- 集合是确定对象构成的集体。
- 构成集合的每个对象叫元素。
- 属于∈、不属于∉
- 元素的“三要素”:确定性、互异性、无序性。