5. 最长回文子串
题目描述
给你一个字符串 s s s ,找到 s s s 中的最长回文子串。
示例:
输入:
s = "babad"
输出:
"bab"
解释:"aba"同样是符合题意的答案。
解答
动态规划
回文串天生自带状态转移的属性,对于一个回文串来说,去掉两头的字符,剩余部分必定也是一个回文串;同样的,如果一个字符串两端的字符不相等,那么这个字符串必定不是一个回文串。因此考虑动态规划。
令 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示字符串 s [ i : j ] s[i:j] s[i:j] 是否是一个回文串,那么有如下的状态转移:
- d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] i f ( s [ i ] = = s [ j ] ) dp[i][j]=dp[i+1][j-1]\qquad if (s[i]==s[j]) dp[i][j]=dp[i+1][j−1]if(s[i]==s[j])
- d p [ i ] [ j ] = f a l s e i f ( s [ i ] ! = s [ j ] ) dp[i][j]=false \qquad if(s[i]!=s[j]) dp[i][j]=falseif(s[i]!=s[j])
在上面的状态转移第一种情况中,我们需要考虑下标的合法性:
如果一个子串的长度为2,并且两端的字符相等 ,那么该子串必定是回文串;
如果一个子串的长度为3,并且两端的字符相等,那么该子串必定是回文串;
综上,当满足条件 s [ i ] = = s [ j ] a n d j − i + 1 < = 3 s[i]==s[j] \quad and \quad j-i+1<=3 s[i]==s[j]andj−i+1<=3 时, d p [ i ] [ j ] = t r u e dp[i][j]=true dp[i][j]=true
所以,我们得到最终的状态转移方程:
d p [ i ] [ j ] = f a l s e i f ( s [ i ] ! = s [ j ] ) ; dp[i][j]=false\qquad if(s[i]\ !=s[j]); dp[i][j]=falseif(s[i] !=s[j]);
d p [ i ] [ j ] = t r u e i f ( s [ i ] = = s [ j ] a n d j − i + 1 < = 3 ) ; dp[i][j]=true\qquad if (s[i]==s[j]\quad and\quad j-i+1<=3); dp[i][j]=trueif(s[i]==s[j]andj−i+1<=3);
d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] i f ( s [ i ] = = s [ j ] a n d j − i + 1 > 3 ) . dp[i][j]=dp[i+1][j-1]\qquad if (s[i]==s[j]\quad and\quad j-i+1>3). dp[i][j]=dp[i+1][j−1]if(s[i]==s[j]andj−i+1>3).
填写 d p dp dp 数组的时候我们注意到, d p [ i ] [ j ] dp[i][j] dp[i][j] 可能由左下方的格子 d p [ i + 1 ] [ j − 1 ] dp[i+1][j-1] dp[i+1][j−1] 转移而来,因此要保证其左下方的格子先被填好。所以在循环填写的时候按列填写。
针对本题的具体实现中,需要一个全局变量 m a x L e n maxLen maxLen 记录最长回文串的长度, b e g i n begin begin 记录这个最长回文串对应的起始下标,每次填写 d p dp dp 数组的时候更新这两个变量。最后再对字符串进行截取,返回 s . s u b s t r ( b e g i n , m a x L e n ) s.substr(begin, \ maxLen) s.substr(begin, maxLen) 即可。
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)
class Solution{
public:
string longestPalindrome(string s) {
int n = s.size();
// 特判如果字符串长度小于2,返回它本身
if (n < 2) {
return s;
}
vector<vector<int>> dp(n, vector<int>(n));
// dp[i][j]表示字符串从i到j是否是回文串
// 初始化dp[i][i]为true
for (int i = 0; i < n; i++) {
dp[i][i] = 1;
}
int maxLen = 1, begin = 0;
// 按列填写dp数组,保证每个格子的左下方格子都先被填好
for (int j = 0; j < n; j++) {
for (int i = 0; i < j; i++) {
if (s[i] != s[j]) {
dp[i][j] = 0;
} else if (j - i + 1 <= 3) {
dp[i][j] = 1;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
// 更新maxLen和begin
if (dp[i][j] && (j - i + 1) > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substr(begin, maxLen);
}
};
中心扩展法
枚举每个子串的中心位置,向两边扩展,直到不能扩展。
奇数长度的字符串中心为一个字符,偶数长度的字符串中心为两个字符,因此对每一个位置
i
i
i,子串的中心可能为s[i]
,也可能为s[i]
和 s[i+1]
,分别进行扩展,记录最长的长度和开始下标。
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
class Solution{
pair<int, int> expand(string s, int left, int right) {
while (left >= 0 && right < s.size() && s[left] == s[right]) {
left--;
right++;
}
// 退出循环时的 left、right 已经不满足回文串
return {left + 1, right - 1};
}
public:
string longestPalindrome(string s) {
int start = 0, maxLen = 0;
for (int i = 0; i < s.size(); i++) {
auto [left1, right1] = expand(s, i, i);
auto [left2, right2] = expand(s, i, i + 1);
if (right1 - left1 + 1 > maxLen) {
start = left1;
maxLen = right1 - left1 + 1;
}
if (right2 - left2 + 1 > maxLen) {
start = left2;
maxLen = right2 - left2 + 1;
}
}
return s.substr(start, maxLen);
}
};