Leetcode 5. 最长回文子串--动态规划与中心扩展

本文介绍了如何使用动态规划和中心扩展法解决寻找字符串中最长回文子串的问题。动态规划方法通过填充二维dp数组,以O(n^2)的时间复杂度和O(n^2)的空间复杂度找到答案。中心扩展法则通过枚举子串中心并扩展,同样在O(n^2)的时间复杂度下完成,但空间复杂度降低到O(1)。两种方法各有优劣,适用于不同的场景。
摘要由CSDN通过智能技术生成

5. 最长回文子串

题目描述

给你一个字符串 s s s ,找到 s s s 中的最长回文子串。

示例:

输入:s = "babad"

输出:"bab"

解释:"aba"同样是符合题意的答案。

解答

动态规划

回文串天生自带状态转移的属性,对于一个回文串来说,去掉两头的字符,剩余部分必定也是一个回文串;同样的,如果一个字符串两端的字符不相等,那么这个字符串必定不是一个回文串。因此考虑动态规划。

d p [ i ] [ j ] dp[i][j] dp[i][j] 表示字符串 s [ i : j ] s[i:j] s[i:j] 是否是一个回文串,那么有如下的状态转移:

  • d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] i f ( s [ i ] = = s [ j ] ) dp[i][j]=dp[i+1][j-1]\qquad if (s[i]==s[j]) dp[i][j]=dp[i+1][j1]if(s[i]==s[j])
  • d p [ i ] [ j ] = f a l s e i f ( s [ i ] ! = s [ j ] ) dp[i][j]=false \qquad if(s[i]!=s[j]) dp[i][j]=falseif(s[i]!=s[j])

在上面的状态转移第一种情况中,我们需要考虑下标的合法性

如果一个子串的长度为2,并且两端的字符相等 ,那么该子串必定是回文串;

如果一个子串的长度为3,并且两端的字符相等,那么该子串必定是回文串;

综上,当满足条件 s [ i ] = = s [ j ] a n d j − i + 1 < = 3 s[i]==s[j] \quad and \quad j-i+1<=3 s[i]==s[j]andji+1<=3 时, d p [ i ] [ j ] = t r u e dp[i][j]=true dp[i][j]=true

所以,我们得到最终的状态转移方程:

d p [ i ] [ j ] = f a l s e i f ( s [ i ]   ! = s [ j ] ) ; dp[i][j]=false\qquad if(s[i]\ !=s[j]); dp[i][j]=falseif(s[i] !=s[j]);

d p [ i ] [ j ] = t r u e i f ( s [ i ] = = s [ j ] a n d j − i + 1 < = 3 ) ; dp[i][j]=true\qquad if (s[i]==s[j]\quad and\quad j-i+1<=3); dp[i][j]=trueif(s[i]==s[j]andji+1<=3);

d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] i f ( s [ i ] = = s [ j ] a n d j − i + 1 > 3 ) . dp[i][j]=dp[i+1][j-1]\qquad if (s[i]==s[j]\quad and\quad j-i+1>3). dp[i][j]=dp[i+1][j1]if(s[i]==s[j]andji+1>3).

填写 d p dp dp 数组的时候我们注意到, d p [ i ] [ j ] dp[i][j] dp[i][j] 可能由左下方的格子 d p [ i + 1 ] [ j − 1 ] dp[i+1][j-1] dp[i+1][j1] 转移而来,因此要保证其左下方的格子先被填好。所以在循环填写的时候按列填写

针对本题的具体实现中,需要一个全局变量 m a x L e n maxLen maxLen 记录最长回文串的长度, b e g i n begin begin 记录这个最长回文串对应的起始下标,每次填写 d p dp dp 数组的时候更新这两个变量。最后再对字符串进行截取,返回 s . s u b s t r ( b e g i n ,   m a x L e n ) s.substr(begin, \ maxLen) s.substr(begin, maxLen) 即可。

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( n 2 ) O(n^2) O(n2)

class Solution{
public:
	string longestPalindrome(string s) {
        int n = s.size();
        // 特判如果字符串长度小于2,返回它本身
        if (n < 2) {
            return s;
        }
        vector<vector<int>> dp(n, vector<int>(n));
        // dp[i][j]表示字符串从i到j是否是回文串
        // 初始化dp[i][i]为true
        for (int i = 0; i < n; i++) {
            dp[i][i] = 1;
        }
        int maxLen = 1, begin = 0;
        // 按列填写dp数组,保证每个格子的左下方格子都先被填好
        for (int j = 0; j < n; j++) {
            for (int i = 0; i < j; i++) {
                if (s[i] != s[j]) {
                    dp[i][j] = 0;
                } else if (j - i + 1 <= 3) {
                    dp[i][j] = 1;
                } else {
                    dp[i][j] = dp[i + 1][j - 1];
                }
                // 更新maxLen和begin
                if (dp[i][j] && (j - i + 1) > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substr(begin, maxLen);
    }
};

中心扩展法

枚举每个子串的中心位置,向两边扩展,直到不能扩展。

奇数长度的字符串中心为一个字符,偶数长度的字符串中心为两个字符,因此对每一个位置 i i i,子串的中心可能为s[i],也可能为s[i] s[i+1] ,分别进行扩展,记录最长的长度和开始下标。

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( 1 ) O(1) O(1)

class Solution{
    pair<int, int> expand(string s, int left, int right) {
        while (left >= 0 && right < s.size() && s[left] == s[right]) {
            left--;
            right++;
        }
        // 退出循环时的 left、right 已经不满足回文串
        return {left + 1, right - 1};
    }
public:
    string longestPalindrome(string s) {
        int start = 0, maxLen = 0;
        for (int i = 0; i < s.size(); i++) {
            auto [left1, right1] = expand(s, i, i);
            auto [left2, right2] = expand(s, i, i + 1);
            if (right1 - left1 + 1 > maxLen) {
                start = left1;
                maxLen = right1 - left1 + 1;
            }
            if (right2 - left2 + 1 > maxLen) {
                start = left2;
                maxLen = right2 - left2 + 1;
            }
        }
        return s.substr(start, maxLen);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值