贪心专题--P1031--洛谷--Sabrinadol--Sabrina

题目描述
有NN堆纸牌,编号分别为 1,2,…,N1,2,…,N。每堆上有若干张,但纸牌总数必为NN的倍数。可以在任一堆上取若干张纸牌,然后移动。

移牌规则为:在编号为11堆上取的纸牌,只能移到编号为22的堆上;在编号为NN的堆上取的纸牌,只能移到编号为N-1N−1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如N=4N=4,44堆纸牌数分别为:

①99②88③1717④66
移动33次可达到目的:

从 ③ 取44张牌放到 ④ (9,8,13,109,8,13,10)-> 从 ③ 取33张牌放到 ②(9,11,10,109,11,10,10)-> 从 ② 取11张牌放到①(10,10,10,1010,10,10,10)。

输入输出格式
输入格式:
两行

第一行为:NN(NN 堆纸牌,1 \le N \le 1001≤N≤100)

第二行为:A_1,A_2, … ,A_nA
1
​ ,A
2
​ ,…,A
n
​ (NN堆纸牌,每堆纸牌初始数,1 \le A_i \le 100001≤A
i
​ ≤10000)

输出格式:
一行:即所有堆均达到相等时的最少移动次数。

输入输出样例
输入样例#1:
4
9 8 17 6
输出样例#1:
3
本题其实就是一个十分普通的贪心·
1.将输入后数据初始化,即都减去平均数
2.在遍历时如果a[i]!=0,那么就需要ans++,其次,因为要让最近的数来填补,所以在遍历时直接
a[i+1]=a[i]就好了

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n;
int a[105];
long long int sum;
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		sum+=a[i];
	}
	sum/=n;
	for(int i=1;i<=n;i++)
	{
		a[i]-=sum;
	}
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		if(a[i]==0) continue;
		else
		{
			a[i+1]+=a[i];
			ans++;
		}
	}
	cout<<ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值