图神经网络七日打卡营学习心得

本文详细介绍了图神经网络中的经典模型GCN,揭示了其信息传递的本质——邻接矩阵与特征的乘积。通过度矩阵解释了邻居节点对中心节点权重的影响。同时对比了GCN与GAT的区别,GCN使用固定权重,而GAT则采用自学习权重。内容源自七日打卡营课程,提供了丰富的学习资源链接,感谢讲师的辛勤付出。
摘要由CSDN通过智能技术生成

图神经网络七日打卡营学习心得

干货满满!

虽然没有具体介绍图神经网络谱域方法,但终于弄明白经典GCN模型与空域方法之间的联系。
在这里插入图片描述
GCN信息传递过程简化来看其实就是邻接矩阵与特征的乘积,对每个节点来说,也就是接收与其相邻节点的特征信息。如下图。
在这里插入图片描述
此外,不同邻居节点对中心节点起到的作用程度不同,需要为邻居赋予权重,那对于GCN来说,度矩阵就可以派上用场。
在这里插入图片描述
在这里插入图片描述
GCN模型中的权重以“度”来衡量,而GAT模型中的权重则可以通过自学习获取。

图
所有的图片都来自于七日打卡营的课程的ppt:
https://github.com/PaddlePaddle/PGL/tree/main/course

最后,感谢各位老师辛勤付出!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值