卷积神经网络基础补充

1.误差的计算

在这里插入图片描述

图1
Softmax:激活函数

在这里插入图片描述

图2

Cross Entropy Loss 交叉熵损失

在这里插入图片描述

图3

如图2,损失函数 Loss = - (o1* log(o1) + o2 *log(o2) )

2.误差的反向传播

在这里插入图片描述
在这里插入图片描述

3.权重的更新

w11(2)(new)= w112(old) - learningrate * gradient
其中gradient = ∂Loss/∂w112

在这里插入图片描述
  为了使网络更快的收敛,我们可使用优化器Optimazer,常见的优化器有SGD(上述的分批次训练)、SGD+Momentum、Adagrad、RMSProp、Adam

1.SGD优化器(Stochastic Gradient Descent)
在这里插入图片描述
2.SGD+Momentum优化器
在这里插入图片描述
3.Adagrad优化器(自适应学习率)
在这里插入图片描述
4.RMSProp优化器(自适应学习率)
在这里插入图片描述

5.Adam优化器(自适应学习率)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值