1.误差的计算
Cross Entropy Loss 交叉熵损失
如图2,损失函数 Loss = - (o1* log(o1) + o2 *log(o2) )
2.误差的反向传播
3.权重的更新
w11(2)(new)= w112(old) - learningrate * gradient
其中gradient = ∂Loss/∂w112
为了使网络更快的收敛,我们可使用优化器Optimazer,常见的优化器有SGD(上述的分批次训练)、SGD+Momentum、Adagrad、RMSProp、Adam
1.SGD优化器(Stochastic Gradient Descent)
2.SGD+Momentum优化器
3.Adagrad优化器(自适应学习率)
4.RMSProp优化器(自适应学习率)
5.Adam优化器(自适应学习率)