算法与数据结构16:滑动窗口

什么是滑动窗口

首先题目给定的参数一般是一个数组
有两个指针,例如l指针和r指针,l指针和r指针的运动方向是相同的,并且l指针不能超过r指针
一个数从一边进来,从一边出去

维护窗口内最大值或最小值的更新结构,通常还需要一个双端队列
比如给定的数组是:[6,4,2,3,5,7,0,5]
定义一个双端队列deque,存储的是数组下标
窗口r指针往右划,比如滑到2,则6、4、2入队列
r指针再滑到3,先弹出2,3入队列,也就是保证队列里面从大到小排列(相等也弹出),不满足的数从尾部弹出
此时窗口的最大值就是双端队列的头部的数
如果l指针往右划,就把出窗口的数,从队列弹出,就可以维持窗口内最大值总是队列头部
在这里插入图片描述

这种做法的时间复杂度O(n),因为每个数只进窗口一次,出窗口一次,比起暴力遍历要优化很多

1、故定大小的窗口从左往右划过数组,返回每个窗口中的最大值

固定大小的窗口从左往右划过数组arr,返回每个窗口中的最大值
窗口大小为w

/**
 * 固定大小的窗口从左往右划过数组arr,返回每个窗口中的最大值
 * 窗口大小为w
 * Created by huangjunyi on 2022/9/4.
 */
public class Window01 {

    public static int[] getMaxInWindow(int[] arr, int w) {
        if (arr == null || arr.length < w || w <= 0) return null;
        //用一个双端队列记录窗口内最大值的优先级,记录的时数组下标
        Deque<Integer> deque = new LinkedList<>();
        //结果数的计算公式 N - W + 1
        int[] res = new int[arr.length - w + 1];
        int index = 0;
        for (int r = 0; r < arr.length; r++) {
            //每次往队列里面压入元素时,保证从左往右递减的顺序
            while (!deque.isEmpty() && arr[deque.peekLast()] <= arr[r]) deque.pollLast();
            deque.addLast(r);

            //如果判断到划出窗口的数的下标正好等于双端队列头部记录的下标,那边从双端队列弹出头部元素
            //出窗口的数的下标 r - w
            if (deque.peekFirst() == r - w) {
                deque.pollFirst();
            }

            //保证窗口的左边界来到下标0(形成一个有效的窗口),才开始往结果集放入元素
            if (r >= w - 1) {
                res[index++] = arr[deque.peekFirst()];
            }
        }
        return res;
    }

}

2、给定一个整形数组arr,整数sum,如果arr中的子数组sub,如果想达标,必须满足:sub中最大值-sub中最小值 <= sum。返回arr中达标子数组的数量

给定一个整形数组arr,整数sum,
如果arr中的子数组sub,如果想达标,必须满足:
sub中最大值-sub中最小值 <= sum
返回arr中达标子数组的数量

这里达标子数组有两个特征:
1、假设有一个达标的子数组,范围是从L到R,那么该子数组的子数组,都是达标的。因为范围缩小,max - min 只会更小不会更大
2、假设有一个子数组是不达标的,范围从L到R,那么该数组往左扩或者往右扩,都是不达标的。因为范围扩大,max - min 只会更大不会更小

所以可以通过滑动窗口求解
左指针l不动,此时求以l为开头的子数组达标的数量
右指针r,不断往右扩,直到不达标,左指针l不动,此时达标子数组个数就是r-l
然后l指针往右划一位,把出窗口的数从双端队列吐出去(如果正好是出窗口的数)
周而复始,直到左指针l划过所有的数

/**
 * 给定一个整形数组arr,整数sum,
 * 如果arr中的子数组sub,如果想达标,必须满足:
 * sub中最大值-sub中最小值 <= sum
 * 返回arr中达标子数组的数量
 * Created by huangjunyi on 2022/9/4.
 */
public class Window02 {

    public static int process(int[] arr, int sum) {
        if (arr == null || arr.length == 0) return 0;
        Deque<Integer> minDeque = new LinkedList<>();
        Deque<Integer> maxDeque = new LinkedList<>();
        int res = 0;
        int l = 0, r = 0;
        while (l < arr.length) {
            while (r < arr.length) {
                //小跟堆记录当前窗口的最小值
                while (!minDeque.isEmpty() && arr[minDeque.peekLast()] > arr[r]) minDeque.pollLast();
                minDeque.addLast(arr[r]);
                //大根堆记录当前窗口的最大值
                while (!maxDeque.isEmpty() && arr[maxDeque.peekLast()] < arr[r]) maxDeque.pollLast();
                maxDeque.addLast(arr[r]);
                //如果最大值减去最小值超了,就退出当前循环,否则r指针继续往右括
                if (sum < arr[maxDeque.peekFirst()] - arr[minDeque.peekFirst()]) break;
                r++;
            }
            // r-l为当前循环得出的达标子数组的数量,累加到结果中取
            res += (r - l);
            /*
            l指针往右推一位,继续下一轮循环
            但l++前,要检查两个堆的堆顶是否是l指针指向的下标,是的话要删除
            对于小顶堆,不存在值为l又不是堆顶的情况,因为不是堆顶代表后面有比它更小的数的下标,如果是这样,那么l在上面就已经弹出了
            对于大顶堆,不存在值为l又不是堆顶的情况,因为不是堆顶代表后面有比它更大的数的下标,如果是这样,那么l在上面就已经弹出了
             */
            if (l == minDeque.peekFirst()) minDeque.pollFirst();
            if (l == maxDeque.peekFirst()) maxDeque.pollFirst();
            l++;
        }
        return res;
    }

}

3、给定一个有序数组,从左往右依次表示X轴上从左往右点的位置。给定一个正整数k,返回如果有一根长度为k的绳子,最多能盖住几个点。绳子的边缘点碰到X轴上的点,也算盖住

给定一个有序数组,从左往右依次表示X轴上从左往右点的位置
给定一个正整数k,返回如果有一根长度为k的绳子,最多能盖住几个点
绳子的边缘点碰到X轴上的点,也算盖住

/**
 * 给定一个有序数组,从左往右依次表示X轴上从左往右点的位置
 * 给定一个正整数k,返回如果有一根长度为k的绳子,最多能盖住几个点
 * 绳子的边缘点碰到X轴上的点,也算盖住
 * Created by huangjunyi on 2022/9/17.
 */
public class WindowProblem01 {

    public static int maxPoint(int[] arr, int k) {
        /*
        利用窗口求解,
        l指针每次走一步,走到数组结尾就停
        r指针在每次循环中尝试往右括,括到 arr[r] - arr[l] > k,就停
        然后尝试用 r - l 更新max变量
         */
        int l = 0;
        int r = 0;
        int max = Integer.MIN_VALUE;
        while (l < arr.length) {
            while (r < arr.length && arr[r] - arr[l] <= k) r++;
            max = Math.max(max, r - l);
            l++;
        }
        return max;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值