P1162 填涂颜色
题目描述
由数字00组成的方阵中,有一任意形状闭合圈,闭合圈由数字11构成,围圈时只走上下左右44个方向。现要求把闭合圈内的所有空间都填写成22.例如:6×6的方阵(n=6),涂色前和涂色后的方阵如下:
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 1 1
0 1 1 0 0 1 0 1 1 2 2 1
1 1 0 0 0 1 1 1 2 2 2 1
1 0 0 0 0 1 1 2 2 2 2 1
1 1 1 1 1 1 1 1 1 1 1 1
输入输出格式
输入格式:
每组测试数据第一行一个整数n(1≤n≤30)
接下来n行,由0和1组成的n×n的方阵。
方阵内只有一个闭合圈,圈内至少有一个0。
输出格式:
已经填好数字2的完整方阵。
思路:将闭合空间染色,不妨先将所有0染为2,再找出所有非在闭合圈内的点改回0,而不在闭合圈的点一定是与最外围的点连通的,因此只要把能从最外圈的点搜索进去的点全部染回0即可。
#include <bits/stdc++.h>
using namespace std;
int dx[4]={0,0,1,-1};
int dy[4]={1,-1,0,0};
int a[100][100];
int n;
void dfs(int x,int y){
if(x<0||y<0||x>=n||y>=n)return;
if(a[x][y]!=2)return;
a[x][y]=0;
for(int i=0;i<4;i++){
dfs(x+dx[i],y+dy[i]);
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
cin>>a[i][j];
if(a[i][j]==0)a[i][j]=2;//先染色
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(i!=0&&i!=n-1&&j!=0&&j!=n-1)continue;//遍历最外圈的点
if(a[i][j]==2)dfs(i,j);//如果已被染色就向内搜索
}
}
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
printf("%d%c",a[i][j],j!=n-1?' ':'\n');//输出染色后的方阵
}
}
return 0;
}