【剑指Offer14-Ⅰ剪绳子】

题目:
在这里插入图片描述
这题的数学做法有点难以理解,毕竟如果把高数还回去了,是基本看不懂的。而且如果在面试里面遇到,也没有那个时间去计算证明。

还是动态规划好理解一点。并且很容易说清楚。

对于一个数字i,拆分出一个正整数j
那么最大乘积等于j乘(i-j)和j乘dp【i-j】的最大值。
前一项是对j不继续进行拆分得到的。而后一项是需要继续进行拆分得到的。

于是我们对每一个数字i都去枚举j即可
C++代码附带测试:

#include<iostream>
#include<vector>

using namespace std;
 

class Solution {
public:
	//动态规划法 
    int integerBreak(int n) {
		if(n==0||n==1){
			return 0;
		} 
		
		int size = n+1;
		vector<int> dp(size,0);
		dp[0] = 0;
		dp[1] = 0;
		for(int i=2;i<=n;i++){
			for(int j = 1;j<i;j++){
				int x = max(j*(i-j),j*dp[i-j]);//不拆分和继续拆分的最大值
				dp[i] = max(x,dp[i]);
			}
		}
		
		return dp[n]; 
    }
    
};

int main(){
	Solution solution;
	cout<<solution.integerBreak(10)<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值