动态规划-3个题

文章介绍了动态规划在解决最值问题中的应用,通过青蛙跳台阶和爬楼梯问题展示了正推和逆推的方法,并提供了递归和非递归的解决方案。接着讨论了最长递增子序列问题,强调了状态转移方程的重要性。此外,还讲解了剪绳子问题,提出了指数优化和动态规划的简洁解法。
摘要由CSDN通过智能技术生成

动态规划 适用于 有限枚举+最值。

求解步骤:

正推 或 逆推:

1. 枚举
2. 边界
3. 最优子结构
4. 状态转移方程

题例

青蛙跳台阶

70. 爬楼梯 - 力扣(LeetCode)

从青蛙跳台阶开始。

逆推 比较好理解,而且 计算机递归很擅长做逆向的事情,但递归 方法栈调用易耗时,可以通过引入Map<n,f(n)> 的方式;或者 递归 转 for 的方式,设置for 初始值,更新for 状态。

* 一次可以跳上1级台阶,也可以跳上2级台阶。n 级的台阶总共有多少种跳法。
* 正推:
* n , 方案, 多少种跳法
* n=0,不跳,1种?
* n=1,1级, 1
* n=2, 1+1/2, 2
* n=3,1+1+1/1+2/2+1, 3
* n=4,1+1+1+1/1+1+2/1+2+1/2+1+1/2+2, 5
* n=5,1+1+1+1+1/1+1+1+2/1+2+1+1/1+2+2/2+1+1+1/2+1+2/2+2+1/, 7
* <p>
* 逆推:
* 10级,先跳9级,再跳1级;先跳8级,再跳2级;先跳7级,再跳 1级/2级?
* 9 级,先跳8级,再跳1级;先跳7级,再跳2级;
* 2级,先跳2级,无;先跳1级,再跳1级;
* 1级,先跳1级,无;
* f(n)=f(n-1)+f(n-2), n>2
* <p>

代码细节:

值得注意的是,

Map.get(?),?是 n还是 n-1/n-2呢?看图1

for 的初始和边界是什么呢?看for 值作用于谁,看 for ++与条件顺序 

图1

// Map<n,f(n)>
Map<Integer, Integer> resultMap = new HashMap<>();
/**
 * 逆推-递归
 * @param n
 * @return
 */
public int climbStairs(int n) {
    if (n <= 1) {
        resultMap.put(0, 1);
        resultMap.put(1, 1);
        return 1;
    }
    if (n == 2) {
        resultMap.put(2, 2);
        return 2;
    }
    // 因为是倒序,先看 n 被计算过
    // n 不被计算,自然 n-1, n-2 从来没被计算过,直接递归
    if (resultMap.containsKey(n)) {
         return resultMap.get(n);
    }
    // 简化成两行代码
    resultMap.put(n, (climbStairs(n - 1) + climbStairs(n - 2)) %1000000007);
    return resultMap.get(n);
}
/**
 * 正推-for
 * @param n
 * @return
 */
public int climbStairsForwardReasoning(int n) {
    if (n <= 1) {
        return 1;
    }
    if (n == 2) {
        return 2;
    }
    int f1=1,f2=2;
    int result=-1;
    // 3级开始
    // 二次开始,先num++ , 再 num<=n
    for (int num=3;num<=n;num++){
        result=f1+f2;
        // 更新
        f1=f2;
        f2=result;
    }
    return result;
}

最长严格递增子序列

300. 最长递增子序列 - 力扣(LeetCode)

这个题的关键在于,找到两个概念。

同时,可以认识到,数学本身是嵌套,多条件限制关系,但我们定义的时候,总是展开来定义,这样好理解,那定义如何映射到 题解里,又或者,定义 如何 映射到 代码 中,是一个有意思的事。

从本题来看,定义 映射到 代码 中 的内容有:

1. 求最值,定义一个变量/一个已有变量,不断更新这个变量值

下标 i01234567
原始数组109253710118
i结尾的
最长递增子序列
11122343
数组中的最长递增子序列=
max(lens[x]), x=[0,n)
10 ; 110/9 ; 110/9/2 ; 12,5 ; 22,5/2,3 ; 22,5,7/2,3,7 ; 32,5,7,101/2,3,7,101 ; 42,5,7,101/2,3,7,101 ; 4


两个概念:
以i结尾的 最长递增子序列/
                  最长递增子序列
设:lens[i]:
i结尾 的最长递增子序列

当:j in [0,i-1], nums[i]>nums[j]

lens[i]=max(lens[j] )+1
=max(lens[i],lens[j] +1)
lens[i] 结尾lens[i] 结尾lens[i] 结尾lens[i] 结尾/ max(lens[j])lens[i] 结尾lens[i] 结尾max(lens[j])
public int findNumberOfLIS(int[] nums) {
    // 以 lens[i] 结尾 的 最大子序列
    int[] lens = new int[nums.length];
    lens[0] = 1;
    
    // 最终结果:[0,nums.length) 最长递增子序列
    int finalMaxLen = 1;
    
    for (int i = 1; i < nums.length; i++) {
        // 初值
        lens[i] = 1;
        // 两两比较 需要加一层 for
        for (int j = 0; j < i; j++) {
            // 求 lens[i]
            if (nums[i] > nums[j]) {
                // 自我更新,少用一个变量来表达
                lens[i] = Math.max(lens[i], (lens[j] + 1));
            }
            // 记录结果
            finalMaxLen = Math.max(finalMaxLen, lens[i]);
        }
    }
    return finalMaxLen;
}

剪绳子

变量大法,指数大法好,O(1) 复杂度,写法还简单。

2 <= 总长n <= 58281017
每段m>0,int1,1;14,4;16
3,5;15
2,6;12
2,3,3;18
5,5;25
2,3,5;30
2,3,2,3;36
8;9;72
2,3,3, 3,3,3;18*27

 
思路1:最小因数分割
例子中,因数都是2,3 且 3多
对于17来说,先二分,二分后的两个数 结果乘积,就是17的结果

 
最短思路:尽量3分,算指数
三分有余数做枚举
public int cuttingRope(int n) {
    // 边界 使用变量,少用枚举,减少代码量
    if (n<=3){
        return n-1;
    }
    // 计算外提,好看
    int a= n%3,b=n/3;
    // /3
    if(a==0){
        return (int) Math.pow(3,b);
    }else if (a==1){
        // 将一个 1+3 转换成 一个 2+2,这个有意思
        return (int)Math.pow(3,b-1)*4;
    }
    // 不需要加else,因为: 1. 前种直接返回 2. 这是最后一种情况
    // 多*2
    return (int)Math.pow(3,b)*2;
}

尽量三分的数学验证:

① 当所有绳段长度相等时,乘积最大。

算数几何不等式:\frac{a1+a2+...+an}{n}\geq \sqrt[n]{a1a2...an} ,等号 当且仅当 a1=a2=...=an 时成立

② 最优的绳段长度为 3 。

列式 求最值:

当然,动态规划自我更新的写法,漂亮极了。

完美表达 动态规划 求极值 的想法。

public int cuttingRopeDynamic(int n) {
    //dp[i] i 的 最大乘积
    int[]dp=new int[n+1];
    dp[1]=1;
    dp[2]=1;
    for(int i=3;i<=n;i++){
        // j<=i-j, 等式 当且仅当 i=2j时成立,表达 二分
        // j 从 1 开始(最小1段),计算 j * i-j
        for(int j=1;j<=i-j;j++){
            dp[i]=Math.max(dp[i],
                    Math.max(j, dp[j]) * Math.max(i-j,dp[i-j])
            );
        }
    }
    return dp[n];
}

皮一下:青蛙跳台阶是我毕业笔试的第一道算法题。看出那个面试官事情比较急,看完我的笔试就没有耐心了,那次的面试体验就很滑稽。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值