孤岛营救问题

欢迎转载,另见版权声明↑↑

内容

1944年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩。瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图。迷宫的外形是一个长方形,其南北方向被划分为N行,东西方向被划分为M列,于是整个迷宫被划分为 N\times M个单元。每一个单元的位置可用一个有序数对(单元的行号,单元的列号)来表示。南北或东西方向相邻的2个单元之间可能互通,也可能有一扇锁着的门,或者是一堵不可逾越的墙。迷宫中有一些单元存放着钥匙,并且所有的门被分成P类,打开同一类的门的钥匙相同,不同类门的钥匙不同。
大兵瑞恩被关押在迷宫的东南角,即(N,M)单元里,并已经昏迷。迷宫只有一个入口,在西北角。也就是说,麦克可以直接进入(1,1)单元。另外,麦克从一个单元移动到另一个相邻单元的时间为1,拿取所在单元的钥匙的时间以及用钥匙开门的时间可忽略不计。
试设计一个算法,帮助麦克以最快的方式到达瑞恩所在单元,营救大兵瑞恩。

出入

格式

输入

第一行有三个整数,分别表示N,M,P的值。

第二行是一个整数K,表示迷宫中门和墙的总数。

I+2(1\leq I\leq K),有五个整数,依次为X_{i1},Y_{i1},X_{i2},Y_{i2},G_i

- 当G_i \geq 1时,表示(X_{i1},Y_{i1})单元与(X_{i2},Y_{i2})单元之间有一扇第G_i类的门

- 当G_i=0时,表示(X_{i1},Y_{i1})单元与(X_{i2},Y_{i2})单元之间有一堵不可逾越的墙(其中,|X_{i1}-X_{i2}|+|Y_{i1}-Y_{i2}|=1, 0\leq G_i\leq P)。

K+3行是一个整数S,表示迷宫中存放的钥匙总数。

K+3+J行(1\leq J\leq S),有三个整数,依次为X_{i1},Y_{i1},Q_i:表示第J把钥匙存放在 (X_{i1},Y_{i1})单元里,并且第J把钥匙是用来开启第Q_i类门的。(其中1\leq Q_i\leq P)。
输入数据中同一行各相邻整数之间用一个空格分隔。

输出

将麦克营救到大兵瑞恩的最短时间的值输出。如果问题无解,则输出-1

样例

输入

4 4 9
9
1 2 1 3 2
1 2 2 2 0
2 1 2 2 0
2 1 3 1 0
2 3 3 3 0
2 4 3 4 1
3 2 3 3 0
3 3 4 3 0
4 3 4 4 0
2
2 1 2
4 2 1

输出

14

数据

范围

|X_{i1}-X_{i2}|+|Y_{i1}-Y_{i2}|=1,0\leq G_i\leq P\\ 1\leq Q_i\leq P\\ N,M,P\leq10, K<150,S\leq 14

提示

网络流24题https://blog.csdn.net/weixin_43890363/article/details/131648120?spm=1001.2014.3001.5501

题解

和网络流没有任何关系……
node[i,j,k]表示走到[i,j]且钥匙状态为k所需要的最小步数。
其中k为一个压缩状态,如果二进制下k的第i位为一,为拥有第i把钥匙,否则没有。
 

#include<bits/stdc++.h>
#define nm 12
using namespace std;
bool key[nm][nm][nm];
int ans,n,m,X1,Y1,g,edge[nm][nm][nm][nm];
int node[nm][nm][1<<nm];
queue<pair<int,int>>q;
void Go(int x,int y){
	if(edge[X1][Y1][x][y]==-1||x>n||y>m||node[x][y][g])return;
	if(x&&y&&(g&(1<<edge[X1][Y1][x][y])))
		node[x][y][g]=ans,
		q.push(make_pair(x*m+y-1,g));
}
int main(){
	int p,k,x2,y2;
	scanf("%d%d%d%d",&n,&m,&p,&k);
	while(k--)
		scanf("%d%d%d%d%d",&X1,&Y1,&x2,&y2,&g),
		edge[x2][y2][X1][Y1]=edge[X1][Y1][x2][y2]=g?g:-1;
	scanf("%d",&k);
	while(k--)
		scanf("%d%d%d",&X1,&Y1,&g),
		key[X1][Y1][g]=true;
	q.push(make_pair(m,1));
	while(!q.empty()){
		g=q.front().second;
		if(((X1=q.front().first/m)==n)&((Y1=q.front().first%m+1)==m)){
			printf("%d",node[X1][Y1][g]);
			return 0;
		}
		q.pop(),ans=++node[X1][Y1][g];
		for(int i=1;i<=p;i++)
			if(key[X1][Y1][i])node[X1][Y1][g|=(1<<i)]=ans;
		Go(X1-1,Y1),Go(X1+1,Y1),Go(X1,Y1-1),Go(X1,Y1+1);
	}
	printf("-1"); 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值