题目来源:https://codeforces.com/contest/19/problem/D
★一两个星期没写线段树了,第一题就不会awa ~ 题解使用了 C++ STL库 中的 set (集合)
翻译:
在一个以(0,0)为原点的二维坐标系下,x轴向右,y轴向上。现在有三种操作,①:增加一个点;②:删去一个点;③:询问一个点(x,y),询问时,找(x,y)右上方 的所有点中 先尽可能靠左的 然后尽可能靠右 的点 出。没有就输出-1 【两点连线不能与x轴、y轴平行】
思路:
首先就要 以x轴的点为元素来建线段树,最好是进行离散化,会方便很多
然后每次操作 维护一个 maxx数组(记录 区间最大值),和一个集合 set(记录区间的y)
然后注意一些细节即可~
注意:
1. lower_bound 和 upper_bound 的区别一定要知道,前者是返回 从左到右第一个 大于等于 val的地址,后者只是返回 从左到右第一个 大于 val的地址
2. 集合 s的最后一个元素的表示 不是 *(s.end())
而是 *(--s.end())
这个具体可以百度 参考链接如下 https://blog.csdn.net/yas12345678/article/details/52601454
3. 集合set里面是自动排好序了的, 比如 你先后插入 1 5 4 3 2 访问末尾元素还是 5
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<set>
using namespace std;
const int maxn=2e5+5;
const int sz=1<<6;
const int mod=1e9+7;
const int inf=2e9+7;
typedef long long LL;
int n,m;
int ansx,ansy;
struct node
{
char c[10];
int x,y;
}f[maxn];
int maxx[maxn<<2];
set<int> s[maxn<<2];
int g[maxn];
template<class T>
void read(T &x)
{
char c; x=1;
while((c=getchar())<'0'||c>'9') if(c=='-') x=-1;
T res=c-'0';
while((c=getchar())>='0'&&c<='9') res=res*10+c-'0';
x*=res;
}
int get(int val) {return lower_bound(g+1,g+m+1,val)-g;}
void update(int k,int l,int r,int x,int y,bool flag)
{
if(l==r){
if(flag){
s[l].insert(y);
if(maxx[k]<y) maxx[k]=y;
}
else{
s[l].erase(y);
if(s[l].size()) maxx[k]=*(--s[l].end());
else maxx[k]=0;
}
return ;
}
int mid=l+r>>1;
if(mid>=x) update(k<<1,l,mid,x,y,flag);
else update(k<<1|1,mid+1,r,x,y,flag);
maxx[k]=max(maxx[k<<1],maxx[k<<1|1]);
}
bool query(int k,int l,int r,int x,int y,int val)
{
// cout<<l<<' '<<r<<' '<<x<<' '<<y<<endl;
int mid=l+r>>1;
if(x<=l&&r<=y){
if(l==r){
set<int>::iterator it =s[l].upper_bound(val); //迭代器
if(it==s[l].end()) return 0; //找不到
ansx=l;
ansy=*it;
return 1;
}
else{
if(maxx[k<<1]>val) if(query(k<<1,l,mid,x,y,val)) return 1;
if(maxx[k<<1|1]>val) if(query(k<<1|1,mid+1,r,x,y,val)) return 1;
return 0;
}
}
if(mid>=x) if(query(k<<1,l,mid,x,y,val)) return 1;
if(mid<y) if(query(k<<1|1,mid+1,r,x,y,val)) return 1;
return 0;
}
int main()
{
scanf("%d",&n);
m=0;
for(int i=1;i<=n;i++){
scanf("%s%d%d",f[i].c,&f[i].x,&f[i].y);
g[++m]=f[i].x;
}
sort(g+1,g+m+1); //排序
m=unique(g+1,g+m+1)-g-1; //去重
for(int i=1;i<=n;i++){
if(f[i].c[0]=='a') update(1,1,m,get(f[i].x),f[i].y,1);
else if(f[i].c[0]=='r') update(1,1,m,get(f[i].x),f[i].y,0);
else{
int tmp=upper_bound(g+1,g+m+1,f[i].x)-g; //不是lower_bound
if(query(1,1,m,tmp,m,f[i].y)) printf("%d %d\n",g[ansx],ansy);
else printf("-1\n");
}
}
return 0;
}