adi,aei与dry run关系

模型校准与验证面临严峻的数据瓶颈与迭代效率低下。 模型精度高度依赖于校准数据的质量和数量。然而,ADI/AEI 阶段精确的三维形貌测量(如 CD-SEM 提供有限高度信息、AFM 速度慢、光学散射仪点测量特性)成本高昂且效率低下,导致关键校准数据严重匮乏。稀疏、局部的量测数据难以在高度多维、强非线性的工艺参数空间中训练出具有足够泛化能力的鲁棒模型。此外,工艺固有的片内及片间波动(Process Variation)使得获得具有代表性的标定数据更为困难,加剧了模型在实际应用中的偏移风险。尤为关键的是,面对模型预测结果与实际硅片量测数据(即 GDSII/Mask -> ADI/AEI 的实际映射)之间的偏差,传统方法被迫依赖耗时漫长的多次试产(Dry Run)迭代修正。 具体流程是:固定已有的OPC模型和工艺配方(Recipe),依据当前建模流程生成ADI/AEI预测轮廓,然后在硅片上进行实际流片、检测,进行严格的光学规则检查(LRC)和关键尺寸比较;发现不匹配后,再手动调整模型参数或结构,进行下一轮Dry Run。这种反复试错的过程(常常需要3-5轮甚至更多)显著延长了模型开发与优化的周期(从数周到数月不等),极大增加了成本(晶圆流片、量测、工程分析等成本)并拖慢了整个工艺节点的开发进度。高复杂度模型所需的大量耦合参数也大大增加了校准难度和过拟合风险,进一步加剧了Dry Run的必要性和次数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值