第五章:Transformer(下)

5.8 使用Transformer构建语言模型


学习目标

  • 了解有关语言模型的知识.
  • 掌握使用Transformer构建语言模型的实现过程.

在这里插入图片描述


  • 什么是语言模型:
    • 以一个符合语言规律的序列为输入,模型将利用序列间关系等特征,输出一个在所有词汇上的概率分布.这样的模型称为语言模型.
# 语言模型的训练语料一般来自于文章,对应的源文本和目标文本形如:
src1 = "I can do" tgt1 = "can do it"
src2 = "can do it", tgt2 = "do it <eos>"

  • 语言模型能解决哪些问题:
    • 1, 根据语言模型的定义,可以在它的基础上完成机器翻译,文本生成等任务,因为我们通过最后输出的概率分布来预测下一个词汇是什么.

    • 2, 语言模型可以判断输入的序列是否为一句完整的话,因为我们可以根据输出的概率分布查看最大概率是否落在句子结束符上,来判断完整性.

    • 3, 语言模型本身的训练目标是预测下一个词,因为它的特征提取部分会抽象很多语言序列之间的关系,这些关系可能同样对其他语言类任务有效果.因此可以作为预训练模型进行迁移学习.


整个案例的实现可分为以下五个步骤

  • 第一步: 导入必备的工具包
  • 第二步: 导入wikiText-2数据集并作基本处理
  • 第三步: 构建用于模型输入的批次化数据
  • 第四步: 构建训练和评估函数
  • 第五步: 进行训练和评估(包括验证以及测试)

第一步: 导入必备的工具包
  • pytorch版本必须使用1.3.1, python版本使用3.6.x
pip install torch==1.3.1

# 数学计算工具包math
import math

# torch以及torch.nn, torch.nn.functional
import torch
import torch.nn as nn
import torch.nn.functional as F

# torch中经典文本数据集有关的工具包
# 具体详情参考下方torchtext介绍
import torchtext

# torchtext中的数据处理工具, get_tokenizer用于英文分词
from torchtext.data.utils import get_tokenizer

# 已经构建完成的TransformerModel
from pyitcast.transformer import TransformerModel

  • torchtext介绍:
    • 它是torch工具中处理NLP问题的常用数据处理包.

  • torchtext的重要功能:
    • 对文本数据进行处理, 比如文本语料加载, 文本迭代器构建等.
    • 包含很多经典文本语料的预加载方法. 其中包括的语料有:用于情感分析的SST和IMDB, 用于问题分类的TREC, 用于及其翻译的 WMT14, IWSLT,以及用于语言模型任务wikiText-2, WikiText103, PennTreebank.

  • 我们这里使用wikiText-2来训练语言模型, 下面有关该数据集的相关详情:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ilute03M-1592810299055)(./img/19.png)]


  • wikiText-2数据集的体量中等, 训练集共有600篇短文, 共208万左右的词汇, 33278个不重复词汇, OvV(有多少正常英文词汇不在该数据集中的占比)为2.6%,数据集中的短文都是维基百科中对一些概念的介绍和描述.

第二步: 导入wikiText-2数据集并作基本处理
# 创建语料域, 语料域是存放语料的数据结构,
# 它的四个参数代表给存放语料(或称作文本)施加的作用.
# 分别为 tokenize,使用get_tokenizer("basic_english")获得一个分割器对象,
# 分割方式按照文本为基础英文进行分割.
# init_token为给文本施加的起始符 <sos>给文本施加的终止符<eos>,
# 最后一个lower为True, 存放的文本字母全部小写.
TEXT = torchtext.data.Field(tokenize=get_tokenizer("basic_english"),
                            init_token='<sos>',
                            eos_token='<eos>',
                            lower=True)

# 最终获得一个Field对象.
# <torchtext.data.field.Field object at 0x7fc42a02e7f0>

# 然后使用torchtext的数据集方法导入WikiText2数据,
# 并切分为对应训练文本, 验证文本,测试文本, 并对这些文本施加刚刚创建的语料域.
train_txt, val_txt, test_txt = torchtext.datasets.WikiText2.splits(TEXT)

# 我们可以通过examples[0].text取出文本对象进行查看.
# >>> test_txt.examples[0].text[:10]
# ['<eos>', '=', 'robert', '<unk>', '=', '<eos>', '<eos>', 'robert', '<unk>', 'is']

# 将训练集文本数据构建一个vocab对象,
# 这样可以使用vocab对象的stoi方法统计文本共包含的不重复词汇总数.
TEXT.build_vocab(train_txt)

# 然后选择设备cuda或者cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

  • 该案例的所有代码都将实现在一个transformer_lm.py文件中.

第三步: 构建用于模型输入的批次化数据
  • 批次化过程的第一个函数batchify代码分析:
def batchify(data, bsz):
    """batchify函数用于将文本数据映射成连续数字, 并转换成指定的样式, 指定的样式可参考下图.
       它有两个输入参数, data就是我们之前得到的文本数据(train_txt, val_txt, test_txt),
       bsz是就是batch_size, 每次模型更新参数的数据量"""
    # 使用TEXT的numericalize方法将单词映射成对应的连续数字.
    data = TEXT.numericalize([data.examples[0].text])
    # >>> data
    # tensor([[   3],
    #    [  12],
    #    [3852],
    #    ...,
    #    [   6],
    #    [   3],
    #    [   3]])

    # 接着用数据词汇总数除以bsz,
    # 取整数得到一个nbatch代表需要多少次batch后能够遍历完所有数据
    nbatch = data.size(0) // bsz

    # 之后使用narrow方法对不规整的剩余数据进行删除,
    # 第一个参数是代表横轴删除还是纵轴删除, 0为横轴,1为纵轴
    # 第二个和第三个参数代表保留开始轴到结束轴的数值.类似于切片
    # 可参考下方演示示例进行更深理解.
    data = data.narrow(0, 0, nbatch * bsz)
    # >>> data
    # tensor([[   3],
    #    [  12],
    #    [3852],
    #    ...,
    #    [  78],
    #    [ 299],
    #    [  36]])
    # 后面不能形成bsz个的一组数据被删除

    # 接着我们使用view方法对data进行矩阵变换, 使其成为如下样式:
    # tensor([[    3,    25,  1849,  ...,     5,    65,    30],
    #    [   12,    66,    13,  ...,    35,  2438,  4064],
    #    [ 3852, 13667,  296
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TiSV工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值