【知识图谱工具汇总】

本文介绍了多个图表示学习的框架,包括PyTorchGeometric、tf_geometric、DGL、CogDL和GraphEmbedding,这些框架支持不同的图神经网络模型和图处理任务。同时提到了图数据库如Neo4j,以及知识图谱表示学习的工具如DGL-KE和OpenKE,它们在大规模图数据处理和嵌入学习方面提供了高效解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,图表示学习与计算框架

1)PyTorch Geometric(PyG)

由德国多特蒙德工业大学研究者推出的基于PyTorch的几何深度学习扩展库。PyG在学术中是比较热门的框架,但是PyG对于异构图以及大规模的图的学习存在着较大的局限性。

地址:

https://github.com/rusty1s/pytorch_geometric

2)tf_geometric

受到PyG启发,为GNN创建了TensoFlow版本。在其Github开源的demo中,可以看到GAE、GCN、GAT等主流的模型已经实现。

地址:

https://github.com/CrawlScript/tf_geometric

3)Deep Graph Library(DGL)

由New York University(NYU)和Amazon Web Services(AWS)联合推出的图神经网络框架。如今已发布至0.4版本的DGL更是全面上线对于异质图支持模块,复现并开源了相关异质图神经网络的代码,如HAN、Metapath2vec等,此外,DGL也发布了训练知识图谱嵌入专用包DGL-KE,并在许多经典的图嵌入模型上进一步优化了性能。

地址:https://github.com/dmlc/dgl

4) CogDL

清华大学知识工程研究室推出了一个大规模图表示学习工具包 CogDL,可以让研究者和开发者更加方便地训练和对比用于节点分类、链路预测以及其他图任务的基准或定制模型。该工具包采用 PyTorch 实现,集成了Deepwalk、LINE、node2vec、GraRep、NetMF、NetSMF、ProNE 等非图神经网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TiSV工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值