20.括号有效性-栈
给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = “()”
输出:true
示例 2:
输入:s = “()[]{}”
输出:true
示例 3:
输入:s = “(]”
输出:false
解题思路
括号的有效性判断在笔试中和现实中都很常见,比如说我们写的代码,编辑器会检查括号是否正确闭合。而且我们的代码可能会包含三种括号 {},判断起来有一点难度。
解决这个问题之前,我们先降低难度,思考一下,如果只有一种括号 (),应该如何判断字符串组成的括号是否有效呢?
假设字符串中只有圆括号,如果想让括号字符串有效,那么必须做到:
每个右括号 ) 的左边必须有一个左括号 ( 和它匹配。
比如说字符串 ()))(( 中,中间的两个右括号左边就没有左括号匹配,所以这个括号组合是无效的。
bool isValid(string str) {
// 待匹配的左括号数量
int left = 0;
for (int i = 0; i < str.size(); i++) {
if (s[i] == '(') {
left++;
} else {
// 遇到右括号
left--;
}
// 右括号太多
if (left == -1)
return false;
}
// 是否所有的左括号都被匹配了
return left == 0;
}
果只有圆括号,这样就能正确判断合法性。对于三种括号的情况,我一开始想模仿这个思路,定义三个变量left1,left2,left3分别处理每种括号,虽然要多写不少 if else 分支,但是似乎可以解决问题。但实际上直接照搬这种思路是不行的,比如说只有一个括号的情况下(())是合法的,但是多种括号的情况下,[(])显然是不合法的。仅仅记录每种左括号出现的次数已经不能做出正确判断了,我们要加大存储的信息量,可以利用栈来模仿类似的思路。栈是一种先进后出的数据结构,处理括号问题的时候尤其有用。我们这道题就用一个名为left的栈代替之前思路中的left变量,遇到左括号就入栈,遇到右括号就去栈中寻找最近的左括号,看是否匹配:
class Solution {
private:
unordered_map<char, char> matchMap_ = {
{')', '('},
{']', '['},
{'}', '{'}
};
public:
bool isValid(string s) {
stack<char> left;
for (char c : s) {
if (c == '(' || c == '[' || c == '{') {
left.push(c);
} else {
if (left.empty()) {
return false;
}
char l = left.top();
left.pop();
if (matchMap_[c] != l) {
return false;
}
}
}
return left.empty();
}
};
平衡括号串-贪心算法
921. 使括号有效的最少添加
它是一个空字符串,或者
它可以被写成 AB (A 与 B 连接), 其中 A 和 B 都是有效字符串,或者
它可以被写作 (A),其中 A 是有效字符串。
给定一个括号字符串 s ,在每一次操作中,你都可以在字符串的任何位置插入一个括号
例如,如果 s = “()))” ,你可以插入一个开始括号为 “(()))” 或结束括号为 “())))” 。
返回 为使结果字符串 s 有效而必须添加的最少括号数。
示例 1:
输入:s = “())”
输出:1
示例 2:
输入:s = “(((”
输出:3
解题分析
判断括号有效性的方法一般都是从左到右遍历,根据左括号和右括号的数量对比来判断是否是有效的括号串。
本题是类似的,具体可以看代码和注释。核心思路是以左括号为基准,通过维护对右括号的需求数 need,来计算最小的插入次数。
需要注意两个地方:
1、当 need == -1 的时候意味着什么?
因为只有遇到右括号 ) 的时候才会 need–,need == -1 意味着右括号太多了,所以需要插入左括号。
比如说 s = “))” 这种情况,需要插入 2 个左括号,使得 s 变成 “()()”,才是一个有效括号串。
2、算法为什么返回 res + need?
因为 res 记录的左括号的插入次数,need 记录了右括号的需求,当 for 循环结束后,若 need 不为 0,那么就意味着右括号还不够,需要插入。
比如说 s = “))(” 这种情况,插入 2 个左括号之后,还要再插入 1 个右括号,使得 s 变成 “()()()”,才是一个有效括号串。
// 注意:cpp 代码由 chatGPT🤖 根据我的 java 代码翻译。
// 本代码的正确性已通过力扣验证,如有疑问,可以对照 java 代码查看。
class Solution {
public:
int minAddToMakeValid(string s) {
// res 记录插入次数
int res = 0;
// need 变量记录右括号的需求量
int need = 0;
for (int i = 0; i < s.length(); i++) {
if (s[i] == '(') {
// 对右括号的需求 + 1
need++;
}
if (s[i] == ')') {
// 对右括号的需求 - 1
need--;
if (need == -1) {
need = 0;
// 需插入一个左括号
res++;
}
}
}
return res + need;
}
};
class Solution {
public:
int minAddToMakeValid(string s) {
int ans = 0;
int leftCount = 0;
for (auto &c : s) {
if (c == '(') {
leftCount++;
} else {
if (leftCount > 0) {
leftCount--;
} else {
ans++;
}
}
}
ans += leftCount;
return ans;
}
};
作者:力扣官方题解
链接:https://leetcode.cn/problems/minimum-add-to-make-parentheses-valid/solutions/1855025/shi-gua-hao-you-xiao-de-zui-shao-tian-ji-gcxu/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
1541 题「平衡括号字符串的最少插入次数」
https://leetcode.cn/problems/minimum-insertions-to-balance-a-parentheses-string/
给你一个括号字符串 s ,它只包含字符 ‘(’ 和 ‘)’ 。一个括号字符串被称为平衡的当它满足:
任何左括号 ‘(’ 必须对应两个连续的右括号 ‘))’ 。
左括号 ‘(’ 必须在对应的连续两个右括号 ‘))’ 之前。
比方说 “())”, “())(())))” 和 “(())())))” 都是平衡的, “)()”, “()))” 和 “(()))” 都是不平衡的。
你可以在任意位置插入字符 ‘(’ 和 ‘)’ 使字符串平衡。
请你返回让 s 平衡的最少插入次数。
示例 1:
输入:s = “(()))”
输出:1
解释:第二个左括号有与之匹配的两个右括号,但是第一个左括号只有一个右括号。我们需要在字符串结尾额外增加一个 ‘)’ 使字符串变成平衡字符串 “(())))”
// 注意:cpp 代码由 chatGPT🤖 根据我的 java 代码翻译。
// 本代码的正确性已通过力扣验证,如有疑问,可以对照 java 代码查看。
class Solution {
public:
int minInsertions(string s) {
// need 记录需右括号的需求量
int res = 0, need = 0;
for (int i = 0; i < s.length(); i++) {
// 一个左括号对应两个右括号
if (s[i] == '(') {
need += 2;
if (need % 2 == 1) {
// 插入一个右括号
res++;
need--;
}
}
if (s[i] == ')') {
need--;
// 说明右括号太多了
if (need == -1) {
// 需要插入一个左括号
res++;
// 同时,对右括号的需求变为 1
need = 1;
}
}
}
return res + need;
}
};
32.最长有效括号-栈+动态规划
32. 最长有效括号
给你一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = “(()”
输出:2
解释:最长有效括号子串是 “()”
示例 2:
输入:s = “)()())”
输出:4
解释:最长有效括号子串是 “()()”
示例 3:
输入:s = “”
输出:0
解题思路
栈+ 动态规划
Stack<Integer> stk = new Stack<>();
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
// 遇到左括号,记录索引
stk.push(i);
} else {
// 遇到右括号
if (!stk.isEmpty()) {
// 配对的左括号对应索引,[leftIndex, i] 是一个合法括号子串
int leftIndex = stk.pop();
// 这个合法括号子串的长度
int len = 1 + i - leftIndex;
} else {
// 没有配对的左括号
}
}
}
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
class Solution {
public:
int longestValidParentheses(string s) {
if (s.empty()) {
return 0;
}
// dp[i] 的定义:记录以 s[i - 1] 结尾的最长合法括号子串长度
// 比s长度多一位,方便计算1 + i - leftIndex + dp[leftIndex - 1]; 不然要单独判断第一个为左括号的情况;
// 当第一个元素不确定时,需要用到哨兵思想,即在数组最前面加一个哨兵元素,这样就可以避免边界条件的判断。
vector<int> dp(s.length() + 1, 0);
stack<int> stk; // 栈存储左括号的索引
for (int i = 0; i < s.length(); i++) {
if (s[i] == '(') {
// 遇到左括号,记录索引
stk.push(i);
dp[i + 1] = 0; // 左括号不可能是合法括号子串的结尾
} else { // 遇到右括号
if (!stk.empty()) {
// 配对的左括号对应索引
int leftIndex = stk.top();
stk.pop();
// 以这个右括号结尾的最长子串长度;dp[leftIndex - 1 + 1]:左括号前一位的最长子串长度, 当一个为左括号时,存在越界风险
int len = 1 + i - leftIndex + dp[leftIndex - 1 + 1];
dp[i + 1] = len;
} else {
dp[i + 1] = 0;
}
}
}
return *max_element(dp.begin(), dp.end());
}
};
22. 括号生成 - 回溯
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
括号问题可以简单分成两类,一类是前文写过的
括号的合法性判断 ,一类是合法括号的生成。对于括号合法性的判断,主要是借助「栈」这种数据结构,而对于括号的生成,一般都要利用
回溯算法 进行暴力穷举。
// 注意:cpp 代码由 chatGPT🤖 根据我的 java 代码翻译。
// 本代码的正确性已通过力扣验证,如有疑问,可以对照 java 代码查看。
#include <vector>
#include <string>
using namespace std;
class Solution {
public:
vector<string> generateParenthesis(int n) {
if (n == 0) return {};
// 记录所有合法的括号组合
vector<string> res;
// 回溯过程中的路径
string track;
// 可用的左括号和右括号数量初始化为 n
backtrack(n, n, track, res);
return res;
}
private:
// 可用的左括号数量为 left 个,可用的右括号数量为 right 个
void backtrack(int left, int right, string& track, vector<string>& res) {
// 若左括号剩下的多,说明不合法
if (right < left) return;
// 数量小于 0 肯定是不合法的
if (left < 0 || right < 0) return;
// 当所有括号都恰好用完时,得到一个合法的括号组合
if (left == 0 && right == 0) {
res.push_back(track);
return;
}
// 尝试放一个左括号
// 选择
track.push_back('(');
backtrack(left - 1, right, track, res);
// 撤消选择
track.pop_back();
// 尝试放一个右括号
// 选择
track.push_back(')');
backtrack(left, right - 1, track, res);
// 撤消选择
track.pop_back();
}
};
参考
https://mp.weixin.qq.com/s/plxWQsTgW6LW3T7yBAXjQg