题目
分析
对于 i 条折线,记给出其分割平面数为 F[i] ,首先给出动态规划公式: F[i]=F[i-1]+4i-3 。
下面给出推导说明,我们将由直线分割平面数推导得出折线分割平面数的一般规律:
设有n条直线,则其对应的分割所得平面数如下:
直线数 | 内部区域数 | 外部区域数 | 总数 |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | 0 | 2*2 | 0+2*2 |
3 | 1 | 2*3 | 1+2*3 |
4 | 1+2 | 2*4 | (1+2)+2*4 |
5 | 1+2+3 | 2*5 | (1+2+3)+2*5 |
… | … | … | … |
n | 1+2+3+…+n | 2*n | (1+2+…n)+2*n |
还可以这样分析,假设当前有 n-1 条直线,若使得第 n 条直线分割的区域数最多, 则其必须与之前 n-1 条直线均相交且不能有共同交点,则在第 n 条直线上有 n-1 个交点,它们将第 n 条直线分为 2 条射线和 n-2 条线段。每条射线与线段都会将它们所在的原区域一分为二,这样每增加一条直线,即多出 2+(n-2) 个区域。
n 条直线分割平面数:
f(n