折线分割平面 | 动态规划

本文探讨了如何使用动态规划解决折线分割平面的问题。通过分析,提出了两种方法来计算n条折线所能分割的平面数,分别是直接根据折线特性推导公式和转换成直线问题进行计算。提供了相关数学推导和问题理解。
摘要由CSDN通过智能技术生成

折线分割平面 | 动态规划

题目

在这里插入图片描述
在这里插入图片描述

分析

对于 i 条折线,记给出其分割平面数为 F[i] ,首先给出动态规划公式: F[i]=F[i-1]+4i-3

下面给出推导说明,我们将由直线分割平面数推导得出折线分割平面数的一般规律:

设有n条直线,则其对应的分割所得平面数如下:

直线数 内部区域数 外部区域数 总数
1 0 0 0
2 0 2*2 0+2*2
3 1 2*3 1+2*3
4 1+2 2*4 (1+2)+2*4
5 1+2+3 2*5 (1+2+3)+2*5
n 1+2+3+…+n 2*n (1+2+…n)+2*n

还可以这样分析,假设当前有 n-1 条直线,若使得第 n 条直线分割的区域数最多, 则其必须与之前 n-1 条直线均相交且不能有共同交点,则在第 n 条直线上有 n-1 个交点,它们将第 n 条直线分为 2 条射线和 n-2 条线段。每条射线与线段都会将它们所在的原区域一分为二,这样每增加一条直线,即多出 2+(n-2) 个区域。

n 条直线分割平面数:

f(n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值