软件工程状态转换图

状态转换图的概念

状态转换图(State Transform Diagram,STD)通过描绘系统的状态及引起系统状态转换的事件,来表示系统的行为。此外,状态图还指明了作为特定事件的结果系统将做哪些动作(例如,处理数据)。

  • 状态是任何可以被观察到的系统行为模式,一个状态代表系统的一种行为模式。状态规定了系统对事件的响应方式。系统对事件的响应,既可以是做一个(或一系列)动作,也可以是仅仅改变系统本身的状态,还可以是既改变状态又做动作。状态转换图的状态有三种包括初态(即初始状态) 、终态(即最终状态)和中间状态,在一张状态转换图中只能有一个初态,而终态则可以有0至多个。

  • 事件是在某个特定时刻发生的事情,它是对引起系统做动作或(和)从一个状态转换到另一个状态的外界事件的抽象。简而言之,事件就是引起系统做动作或(和)转换状态的控制信息。

状态转换图的符号表示

  • 初态用实心圆表示,终态用一对同心圆(内圆为实心圆)表示。

  • 中间状态用圆角矩形表示,可以用两条水平横线把它分成上、中、下3个部分。上面部分为状态的名称,这部分是必须有的;中间部分为状态变量的名字和值,这部分是可选的;下面部分是活动表,这部分也是可选的。

  • 状态图中两个状态之间带箭头的连线称为状态转换,箭头指明了转换方向。状态变迁通常是由事件触发的,在这种情况下应在表示状态转换的箭头线上标出触发转换的事件表达式;如果在箭头线上未标明事件,则表示在源状态的内部活动执行完之后自动触发转换。

例如:机票预定系统中涉及的状态是机票的状态。当新的航空公司入驻之后,系统管理员会向数据库中添加机票相关信息,该机票进入审核状态,当该机票审核通过后,则处于待售状态;在销售过程中,如果该机票全部销售完毕,则进入售罄状态;销售过程中,如果航班取消,机票会进入下架状态,机票售罄或下架后,管理员清空机票信息,机票会进入退出流通状态,最后管理员删除机票。请根据上述描述画出相应的状态转换图。

 

有限自动机(DFA)是一种有限状态机,是计算理论中的一个重要概念。DFA由一个有限状态集合、一个输入字母表、一个状态转移函数和一个初始状态组成。在本文中,我们将讨论如何实现一个有限自动机的状态转换图显示程序。 首先,我们需要定义DFA的状态转移矩阵。该矩阵描述了有限自动机从一个状态转移到另一个状态的方式。矩阵的行表示起始状态,列表示输入字符,每个单元格中的值表示从起始状态通过输入字符转移到的下一个状态。 例如,以下是一个简单的DFA的状态转移矩阵: | 状态 | 0 | 1 | |------|---|---| | 0 | 1 | 2 | | 1 | 0 | 3 | | 2 | 3 | 0 | | 3 | 2 | 1 | 在上面的矩阵中,有限自动机有四个状态(0、1、2和3),输入字符集合为{0,1},初始状态为0,终止状态为3。根据矩阵中的值,有限自动机从一个状态转移到另一个状态。 接下来,我们需要实现一个算法来生成DFA的状态转换图。该算法将状态转移矩阵作为输入,并输出一个状态转换图,其中节点表示DFA的状态,边表示从一个状态到另一个状态的转换。 以下是一种实现该算法的方法: 1. 创建一个空白画布,并设置节点和边的默认样式。 2. 将DFA的初始状态添加到画布中,并为其设置对应的节点样式。 3. 遍历状态转移矩阵,对于每个单元格,创建一个表示起始状态的节点和一个表示结束状态的节点,以及一条连接它们的边。使用矩阵中的值来标识边上的标签。 4. 如果结束状态是DFA的终止状态,则为该节点设置对应的节点样式。 5. 将所有节点和边添加到画布中,并显示画布。 以下是使用Python和Tkinter库实现该算法的示例代码: ```python from tkinter import * import numpy as np class DFAViewer(Frame): def __init__(self, master=None, dfa=None, **kw): super().__init__(master, **kw) self.dfa = dfa self.canvas = Canvas(self, width=600, height=400, bg='white') self.canvas.pack(fill=BOTH, expand=YES) self.node_size = 30 self.node_style = {'fill': 'white', 'outline': 'black'} self.start_style = {'fill': 'yellow', 'outline': 'black'} self.final_style = {'fill': 'green', 'outline': 'black'} self.edge_style = {'arrow': LAST} def draw(self): self.canvas.delete(ALL) nodes = {} for i in range(self.dfa.num_states): x, y = self.get_node_position(i) node = self.canvas.create_oval(x, y, x+self.node_size, y+self.node_size, **self.node_style) nodes[i] = node if i == self.dfa.start_state: self.canvas.itemconfig(node, **self.start_style) if i in self.dfa.final_states: self.canvas.itemconfig(node, **self.final_style) for i in range(self.dfa.num_states): for j in range(self.dfa.num_symbols): if self.dfa.transition_table[i][j] is None: continue x1, y1 = self.get_node_position(i) x2, y2 = self.get_node_position(self.dfa.transition_table[i][j]) label = self.dfa.symbols[j] self.canvas.create_line(x1+self.node_size//2, y1+self.node_size//2, x2+self.node_size//2, y2+self.node_size//2, **self.edge_style) self.canvas.create_text((x1+x2)//2, (y1+y2)//2, text=label) def get_node_position(self, state): num_cols = int(np.ceil(np.sqrt(self.dfa.num_states))) col = state % num_cols row = state // num_cols margin = 50 x = margin + col * (self.node_size + margin) y = margin + row * (self.node_size + margin) return x, y class DFA: def __init__(self, num_states, symbols, start_state, final_states, transition_table): self.num_states = num_states self.symbols = symbols self.start_state = start_state self.final_states = final_states self.transition_table = transition_table self.num_symbols = len(symbols) root = Tk() root.title('DFA Viewer') symbols = ['0', '1'] transition_table = np.array([[1, 2], [0, 3], [3, 0], [2, 1]]) dfa = DFA(num_states=4, symbols=symbols, start_state=0, final_states=[3], transition_table=transition_table) viewer = DFAViewer(root, dfa) viewer.pack(fill=BOTH, expand=YES) viewer.draw() root.mainloop() ``` 在上面的代码中,我们定义了一个DFA类来存储有限自动机的信息,包括状态转移矩阵、输入字符集合、初始状态和终止状态。我们还定义了一个DFAViewer类来显示DFA的状态转换图。在主函数中,我们创建了一个简单的DFA,并使用DFAViewer类来显示其状态转换图。 运行程序后,将会看到一个显示DFA状态转换图的窗口。该图形界面包含了所有的状态和转换边,以及起始状态和终止状态的标识。 通过实现这个程序,我们可以更好地理解有限自动机的工作原理,并且能够更方便地可视化有限自动机的状态转换过程。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lw中

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值