题意
给出A,B,C,求以下方程
求出容易一个满足该方程的x,y,z
思路
C的最高位产生的有两种,第一种是A,B的最高位直接相加得到,第二种就是A和B相加进位产生的,换句话说,第一种就是A加B产生的C的位数等于A,B中的最高位,而第二种则是C的位数比A,B的最高位还要高一位;
这样子我们就可以知道,C至少和A,B的其中一位的位数相同或者大1,我们先把A,B,C后面补零,到相同位数,判断四种情况就可以了,即
(C - A) 等于 B
(C - A/10) 等于B
(C - B) 等于 A
(C - B/10)等于A
注意因为我们一开始往A,B,C后面补零,所以这里的相减得到的位数不一定等于A或B,我们需要在相减的结果中从高位往下遍历,找到第一个不为零的数,再往后遍历
具体实现看代码注释
代码
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define maxn 500500
using namespace std;
int a[maxn], b[maxn], c[maxn], d[maxn], lim = 3e5;
char a1[maxn], b1[maxn], c1[maxn];
int sol(int c[], int lc, int a[], int la, int b[], int lb){//判断c-a==b?
for(int i = 0; i < lim; i++){//判断c是否大于a,如果c小于a,就不可能减出b,return-1
if(c[i] < a[i]) return -1;
else if(c[i] > a[i]) break;
}
memset(d, 0, sizeof(d));
for(int i = 0; i < lim; i++){// c-a的值存在d
d[i] = c[i] - a[i];
}
for (i = lim - 1; i; i--) {// 如果有不够减的位要向前一位借1
if (d[i] < 0) {
d[i-1]--;
d[i] += 10;
}
}
int t = 0;
while(!d[t]&&t<lim) t++;//从d的0也就是表示的最高位开始遍历
//到第一个不为0的位数退出,也就是找到d的最高位
if(t == lim) return -1;//如果t==lim说明c-a==0了,但是b!=0所以return-1
for(int i = 0; i < lb; i++){//判断d==b?
if(d[t+i] != b[i]) return -1;//不等于return-1
}
return (lim - lb - t);//b应该补的位数
}
int main(){
int t;
scanf("%d", &t);
while(t--){
memset(a, 0, sizeof(a));
memset(b, 0, sizeof(b));
memset(c, 0, sizeof(c));
scanf("%s%s%s", &a1, &b1, &c1);
int la = strlen(a1), lb = strlen(b1), lc = strlen(c1);
for(int i = 0; i < la; i++) a[i + 1] = a1[i] - '0';//a[0]空出来,因为最高为在1,所以空出一个位等下相当于除10
for(int i = 0; i < lb; i++) b[i + 1] = b1[i] - '0';
for(int i = 0; i < lc; i++) c[i + 1] = c1[i] - '0';
int x = lim - la, y = lim - lb, z = lim - lc;
int temp;
if((temp = sol(c+1, lc, a+1, la, b+1, lb)) != -1){//(C - A) 等于 B
printf("%d %d %d\n", x, temp, z);
continue;
}
if((temp = sol(c+1, lc, b+1, lb, a+1, la)) != -1){//(C - B) 等于 A
printf("%d %d %d\n", temp, y, z);
continue;
}
if((temp = sol(c+1, lc, a, la+1, b+1, lb)) != -1){//(C - A/10) 等于B
printf("%d %d %d\n", x-1, temp, z);
continue;
}
if((temp = sol(c+1, lc, b, lb+1, a+1, la)) != -1){//(C - B/10)等于A
printf("%d %d %d\n", temp, y-1, z);
continue;
}
printf("-1\n");
}
}