算法练习 DAY29 || 491.递增子序列 46.全排列 47.全排列 II

这篇博客详细介绍了如何利用回溯算法解决两个经典的计算机科学问题:递增子序列和全排列。对于递增子序列问题,强调了不能对原数组排序,而是通过设置unordered_set来去重。而在全排列问题中,通过used数组记录已使用的元素,避免重复。在全排列II问题中,增加了横向和纵向的去重逻辑,确保重复数字的正确处理。这些问题的解决方案都展示了回溯算法在处理组合问题上的应用。
摘要由CSDN通过智能技术生成

491.递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

输入: [4, 6, 7, 7]
输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

给定数组的长度不会超过15。
数组中的整数范围是 [-100,100]。
给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况

思路:
在90.子集II中我们是通过排序,再加一个标记数组来达到去重的目的。
而本题求自增子序列,是不能对原数组经行排序的,排完序的数组都是自增子序列了。
所以不能使用之前的去重逻辑!
在这里插入图片描述

class Solution {
public:
	vector<int> path;
	vector< vector<int>> result;
	void backtracking(vector<int>& nums, int startIndex) {
		if (path.size() >= 2) {
			result.push_back(path);
		}
		//当遍历到数组最后一位 就结束了
		if (startIndex >= nums.size()) return;

		unordered_set<int> set;
		for (int i = startIndex; i < nums.size(); i++) {
			//进行去重以及逻辑判断 find函数返回一个迭代器
			//关于set的find函数的返回值find会挨个查找set,当到达set.end()时,也就是一个也没找到,返回end
			if (set.find(nums[i]) != set.end()) continue;

			if (path.size() == 0 || nums[i] >= path.back()) {
				set.insert(nums[i]); //回溯以后不需要擦除set  因为每一层都会重新定义一个set
				path.push_back(nums[i]);
				backtracking(nums, i + 1);
				path.pop_back();
			}
			
		}
	}
	vector<vector<int>> findSubsequences(vector<int>& nums) {
		path.clear();
		result.clear();
		backtracking(nums, 0);
		return result;
	}
};

46.全排列

给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:

输入: [1,2,3]
输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

思路:
此时就不需要startIndex来确定从数组哪里开始取值
但是需要used数组来判断哪一个元素已经被使用过了,从而达到去重的效果

class Solution {
public:
	vector<int> path;
	vector<vector<int>> result;

	void backtracking(vector<int>& nums,vector<bool>& used) {
		if (path.size() == nums.size()) {
			result.push_back(path);
			return;
		}

		//used数组,其实就是记录此时path里都有哪些元素使用了,
		//一个排列里一个元素只能使用一次。
		for (int i = 0; i < nums.size(); i++) {
			if (used[i] == true)  continue;
			path.push_back(nums[i]);
			used[i] = true;
			backtracking(nums, used);
			path.pop_back();
			used[i] = false;
		}
	}
	vector<vector<int>> permute(vector<int>& nums) {
		path.clear();
		result.clear();
		vector<bool> used(nums.size(), false);
		backtracking(nums,used);
		return result;
	}
};

47.全排列 II

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

1 <= nums.length <= 8
-10 <= nums[i] <= 10

横纵都要进行去重 使用一个used数组就可以

class Solution {
public:
	vector<int> path;
	vector<vector<int>> result;

	void backtracking(vector<int>& nums, vector<bool> used) {
		if (path.size() == nums.size()) {
			result.push_back(path);
			return;
		}

		for (int i = 0; i < nums.size(); i++) {
			//去重
			//纵向
			if (used[i] == true) { continue; }
			//横向
			// used[i - 1] == true,说明同一树枝nums[i - 1]使用过
			// used[i - 1] == false,说明同一树层nums[i - 1]使用过 
			// 如果同一树层nums[i - 1]使用过则直接跳过
			if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) continue;

			used[i] = true;
			path.push_back(nums[i]);
			backtracking(nums, used);
			used[i] = false;
			path.pop_back();
		}
	}
	
	vector<vector<int>> permuteUnique(vector<int>& nums) {
		path.clear();
		result.clear();
		vector<bool> used(nums.size(), false);
		sort(nums.begin(), nums.end());
		backtracking(nums, used);
		return result;
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值